Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2014 (2014), Article ID 697925, 11 pages
Research Article

Numerical and Experimental Stability Investigation of a Flexible Rotor on Two Different Tilting Pad Bearing Configurations

1Beijing Key Laboratory of Health Monitoring and Self-Recovery for High-End Mechanical Equipment, Beijing University of Chemical Technology, Beijing 100029, China
2ROMAC, Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
3Rotor Bearing Solutions International, 3277 Arbor Trace, Charlottesville, VA 22911-7580, USA

Received 30 May 2014; Revised 19 July 2014; Accepted 19 July 2014; Published 13 August 2014

Academic Editor: Ryoichi Samuel Amano

Copyright © 2014 Weimin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Rotordynamic stability is crucial for high performance centrifugal compressors. In this paper, the weighted instrumental variable (WIV) based system identification method for rotating machinery stability is investigated based on a sine sweep forward excitation with an electromagnetic actuator. The traditional multiple input multiple output (MIMO) frequency response function (FRF) is transformed into a directional frequency response function (dFRF). The rational polynomial method (RPM) combined with WIV is developed to identify the rotor’s first forward mode parameters. This new approach is called the COMDYN method. Experimental work using the COMDYN method is carried out under different rotating speeds, oil inlet temperatures, and pressure conditions. Two sets of bearings with preloads 0.1 and 0.3 are investigated. A numerical rotor-bearing model is also built. The numerical results correlate reasonably well with the experimental results. The investigation results indicate that the new method satisfies the desired features of rotating machine stability identification. Furthermore, the system log decrement was improved somewhat with the increase of oil inlet temperature. The increase of oil supply pressure affects the rotor-bearing system stability very slightly. The results of this paper provide new and useful insights for potentially avoiding instability faults in centrifugal compressors.