Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reproductive Medicine
Volume 2013, Article ID 906813, 8 pages
http://dx.doi.org/10.1155/2013/906813
Clinical Study

Natural Killer Cells and Their Activation Status in Normal Pregnancy

1Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital, London SE5 9RS, UK
2Department of Obstetrics and Gynaecology, St. Helier Hospital, Carshalton SM5 1AA, UK
3Department of Obstetrics and Gynaecology, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
4Department of Immunology, St Helier Hospital, Carshalton, Surrey SM5 1AA, UK
5Department of Fetal Medicine, University College Hospital, London WC1E 6DB, UK

Received 9 December 2012; Revised 22 February 2013; Accepted 3 March 2013

Academic Editor: Yuping Wang

Copyright © 2013 Beatrice Mosimann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. N. Bulmer and G. E. Lash, “Human uterine natural killer cells: a reappraisal,” Molecular Immunology, vol. 42, no. 4, pp. 511–521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Moffett-King, “Natural killer cells and pregnancy,” Nature Reviews Immunology, vol. 2, no. 9, pp. 656–663, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Cooper, T. A. Fehniger, and M. A. Caligiuri, “The biology of human natural killer-cell subsets,” Trends in Immunology, vol. 22, no. 11, pp. 633–640, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Yagel, “The developmental role of natural killer cells at the fetal-maternal interface,” American Journal of Obstetrics and Gynecology, vol. 201, no. 4, pp. 344–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Dosiou and L. C. Giudice, “Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives,” Endocrine Reviews, vol. 26, no. 1, pp. 44–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Van den Heuvel, K. Hatta, C. G. Peralta, V. K. Han, and D. A. Clark, “CD56+ cells are recruited to the uterus in two waves: at ovulation and during the first 2 weeks after missed menses,” American Journal of Reproductive Immunology, vol. 59, no. 2, pp. 90–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. S. Bansal, “Joining the immunological dots in recurrent miscarriage,” American Journal of Reproductive Immunology, vol. 64, no. 5, pp. 307–315, 2010. View at Google Scholar · View at Scopus
  8. R. Craston, M. Koh, A. McDermott, N. Ray, H. G. Prentice, and M. W. Lowdell, “Temporal dynamics of CD69 expression on lymphoid cells,” Journal of Immunological Methods, vol. 209, no. 1, pp. 37–45, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Llera, F. Viedma, F. Sánchez-Madrid, and J. Tormo, “Crystal structure of the C-type lectin-like domain from the human hematopoietic cell receptor CD69,” Journal of Biological Chemistry, vol. 276, no. 10, pp. 7312–7319, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Marzio, J. Mauël, and S. Betz-Corradin, “CD69 and regulation of the immune function,” Immunopharmacology and Immunotoxicology, vol. 21, no. 3, pp. 565–582, 1999. View at Google Scholar · View at Scopus
  11. R. De Maria, M. G. Cifone, R. Trotta et al., “Triggering of human monocyte activation through CD69, a member of the natural killer cell gene complex family of signal transducing receptors,” Journal of Experimental Medicine, vol. 180, no. 5, pp. 1999–2004, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. L. L. Lanier, D. W. Buck, L. Rhodes et al., “Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen,” Journal of Experimental Medicine, vol. 167, no. 5, pp. 1572–1585, 1988. View at Google Scholar · View at Scopus
  13. H. N. Ho, K. H. Chao, C. K. Chen, Y. S. Yang, and S. C. Huang, “Activation status of T and NK cells in the endometrium throughout menstrual cycle and normal and abnormal early pregnancy,” Human Immunology, vol. 49, no. 2, pp. 130–136, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Avril, S. Iochmann, D. Brand, P. Bardos, H. Watier, and G. Thibault, “Human choriocarcinoma cell resistance to natural killer lysis due to defective triggering of natural killer cells,” Biology of Reproduction, vol. 69, no. 2, pp. 627–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Helige, G. Hagendorfer, J. Smolle, and G. Dohr, “Uterine natural killer cells in a three-dimensional tissue culture model to study trophoblast invasion,” Laboratory Investigation, vol. 81, no. 8, pp. 1153–1162, 2001. View at Google Scholar · View at Scopus
  16. C. B. Coulam and R. G. Roussev, “Correlation of NK cell activation and inhibition markers with NK cytoxicity among women experiencing immunologic implantation failure after in vitro fertilization and embryo transfer,” Journal of Assisted Reproduction and Genetics, vol. 20, no. 2, pp. 58–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Sacks, Y. Yang, E. Gowen, S. Smith, L. Fay, and M. Chapman, “Detailed analysis of peripheral blood natural killer cells in women with repeated IVF failure,” Journal of Reproductive Immunology, vol. 67, pp. 434–442, 2012. View at Google Scholar
  18. M. Y. Thum, S. Bhaskaran, H. I. Abdalla et al., “An increase in the absolute count of CD56dimCD16+CD69+ NK cells in the peripheral blood is associated with a poorer IVF treatment and pregnancy outcome,” Human Reproduction, vol. 19, no. 10, pp. 2395–2400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Yoo, J. Kwak-Kim, A. R. Han et al., “Peripheral blood NK cell cytotoxicities are negatively correlated with CD8+ T cells in fertile women but not in women with a history of recurrent pregnancy loss,” American Journal of Reproductive Immunology, vol. 68, no. 1, pp. 38–46, 2012. View at Publisher · View at Google Scholar
  20. E. E. Winger, J. L. Reed, S. Ashoush, T. El-Toukhy, S. Ahuja, and M. Taranissi, “Elevated preconception CD56+ 16+ and/or Th1:Th2 levels predict benefit from IVIG therapy in subfertile women undergoing IVF,” American Journal of Reproductive Immunology, vol. 66, no. 5, pp. 394–403, 2011. View at Publisher · View at Google Scholar
  21. H. Valdimarsson, C. Mulholland, V. Fridriksdottir, and D. V. Coleman, “A longitudinal study of leucocyte blood counts and lymphocyte responses in pregnancy: a marked early increase of monocyte-lymphocyte ratio,” Clinical and Experimental Immunology, vol. 53, no. 2, pp. 437–443, 1983. View at Google Scholar · View at Scopus
  22. S. Lurie, E. Rahamim, I. Piper, A. Golan, and O. Sadan, “Total and differential leukocyte counts percentiles in normal pregnancy,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 136, no. 1, pp. 16–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kühnert, R. Strohmeier, M. Stegmüller, and E. Halberstadt, “Changes in lymphocyte subsets during normal pregnancy,” European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 76, pp. 147–151, 1998. View at Google Scholar
  24. F. Mahmoud, H. Abul, A. Omu, S. Al-Rayes, D. Haines, and K. Whaley, “Pregnancy-associated changes in peripheral blood lymphocyte subpopulations in normal Kuwaiti women,” Gynecologic and Obstetric Investigation, vol. 52, no. 4, pp. 232–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. A. L. Veenstra van Nieuwenhoven, A. Bouman, H. Moes et al., “Cytokine production in natural killer cells and lymphocytes in pregnant women compared with women in the follicular phase of the ovarian cycle,” Fertility and Sterility, vol. 77, no. 5, pp. 1032–1037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. G. E. Lash and J. N. Bulmer, “Do uterine natural killer (uNK) cells contribute to female reproductive disorders?” Journal of Reproductive Immunology, vol. 88, no. 2, pp. 156–164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. E. Beer, J. Y. H. Kwak, and J. E. Ruiz, “Immunophenotypic profiles of peripheral blood lymphocytes in women with recurrent pregnancy losses and in infertile women with multiple failed in vitro fertilization cycles,” American Journal of Reproductive Immunology, vol. 35, no. 4, pp. 376–382, 1996. View at Google Scholar · View at Scopus
  28. M. Y. Thum, S. Bhaskaran, A. S. Bansal et al., “Simple enumerations of peripheral blood natural killer (CD56+ NK) cells, B cells and T cells have no predictive value in IVF treatment outcome,” Human Reproduction, vol. 20, no. 5, pp. 1272–1276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. W. Park, H. J. Lee, C. W. Park, S. R. Hong, J. Kwak-Kim, and K. M. Yang, “Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages,” American Journal of Reproductive Immunology, vol. 63, no. 2, pp. 173–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Yokota, A. Fukui, A. Funamizu et al., “Role of NKp46 expression in cytokine production by CD56-positive NK cells in the peripheral blood and the uterine endometrium,” American Journal of Reproductive Immunology, vol. 69, no. 3, pp. 202–211, 2013. View at Publisher · View at Google Scholar
  31. A. Van der Meer, H. G. M. Lukassen, B. van Cranenbroek et al., “Soluble HLA-G promotes Th1-type cytokine production by cytokine-activated uterine and peripheral natural killer cells,” Molecular Human Reproduction, vol. 13, no. 2, pp. 123–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Fukui, A. Funamizu, M. Yokota et al., “Uterine and circulating natural killer cells and their roles in women with recurrent pregnancy loss, implantation failure and preeclampsia,” Journal of Reproductive Immunology, vol. 90, no. 1, pp. 105–110, 2011. View at Publisher · View at Google Scholar
  33. G. P. Sacks, K. Studena, I. L. Sargent, and C. W. G. Redman, “Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis,” American Journal of Obstetrics and Gynecology, vol. 179, no. 1, pp. 80–86, 1998. View at Google Scholar · View at Scopus
  34. I. L. Sargent, S. J. Germain, G. P. Sacks, S. Kumar, and C. W. G. Redman, “Trophoblast deportation and the maternal inflammatory response in pre-eclampsia,” Journal of Reproductive Immunology, vol. 59, no. 2, pp. 153–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. I. L. Sargent, A. M. Borzychowski, and C. W. G. Redman, “NK cells and human pregnancy—an inflammatory view,” Trends in Immunology, vol. 27, no. 9, pp. 399–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. J. R. Prins, N. Gomez-Lopez, and S. A. Robertson, “Interleukin-6 in pregnancy and gestational disorders,” Journal of Reproductive Immunology, vol. 95, no. 1-2, pp. 1–14, 2012. View at Publisher · View at Google Scholar
  37. I. Granne, J. H. Southcombe, J. V. Snider et al., “ST2 and IL-33 in pregnancy and pre-eclampsia,” PLoS ONE, vol. 6, no. 9, Article ID e24463, 1 pages, 2011. View at Google Scholar
  38. M. Milovanovic, V. Volarevic, G. Radosavljevic, I. Jovanovic, N. Pejnovic, and N. Arsenijevic, “Lukic ML. IL-33/ST2 axis in inflammation and immunopathology,” Immunologic Research, vol. 52, no. 1-2, pp. 89–99, 2012. View at Publisher · View at Google Scholar
  39. P. Ozanne, O. Linderkamp, F. C. Miller, and H. J. Meiselman, “Erythrocyte aggregation during normal pregnancy,” American Journal of Obstetrics and Gynecology, vol. 147, no. 5, pp. 576–583, 1983. View at Google Scholar · View at Scopus
  40. A. H. Picklesimer, H. L. Jared, K. Moss, S. Offenbacher, J. D. Beck, and K. A. Boggess, “Racial differences in C-reactive protein levels during normal pregnancy,” American Journal of Obstetrics and Gynecology, vol. 199, no. 5, pp. 523.e1–523.e6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. S. Bansal, S. Bora, S. Saso, J. R. Smith, M. R. Johnson, and M. Y. Thum, “The mechanism of human chorionic gonadotrophin mediated immunomodulation in pregnancy,” Expert Review of Clinical Immunology, vol. 8, no. 8, pp. 747–753, 2012. View at Google Scholar
  42. L. A. Cole, “Biological functions of hCG and hCG-related molecules,” Reproductive Biology and Endocrinology, vol. 8, article 102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Norris, T. Nevers, S. Sharma, and S. Kalkunte, “Review: HCG, preeclampsia and regulatory T cells,” Placenta, vol. 32, no. 2, pp. S182–S185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Tsampalas, V. Gridelet, S. Berndt, J. M. Foidart, V. Geenen, and S. P. d'Hauterive, “Human chorionic gonadotropin: a hormone with immunological and angiogenic properties,” Journal of Reproductive Immunology, vol. 85, no. 1, pp. 93–98, 2010. View at Publisher · View at Google Scholar · View at Scopus