Table of Contents Author Guidelines Submit a Manuscript
International Journal of Surgical Oncology
Volume 2013 (2013), Article ID 203873, 6 pages
http://dx.doi.org/10.1155/2013/203873
Research Article

Trail Overexpression Inversely Correlates with Histological Differentiation in Intestinal-Type Sinonasal Adenocarcinoma

1Department of Otorhinolaryngology, Marche Polytechnic University, 60121 Ancona, Italy
2Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
3Department of Sperimental and Clinical Medicine, University of Foggia, 71121 Foggia, Italy
4Department of Neurosciences, Marche Polytechnic University, 60121 Ancona, Italy

Received 22 May 2013; Accepted 19 September 2013

Academic Editor: Timothy M. Pawlik

Copyright © 2013 M. Re et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. E. Robin, D. J. Powell, and J. M. Stansbie, “Carcinoma of the nasal cavity and paranasal sinuses: incidence and presentation of different histological types,” Clinical Otolaryngology and Allied Sciences, vol. 4, no. 6, pp. 431–456, 1979. View at Google Scholar · View at Scopus
  2. J. G. Batsakis, D. H. Rice, and A. R. Solomon, “The pathology of head and neck tumors: squamous and mucous-gland carcinomas of the nasal cavity, paranasal sinuses, and larynx, part VI,” Head and Neck Surgery, vol. 2, no. 6, pp. 497–508, 1980. View at Google Scholar · View at Scopus
  3. M. Re and E. Pasquini, “Nasopharyngeal mucoepidermoid carcinoma in children,” International Journal of Pediatric Otorhinolaryngology, vol. 77, no. 4, pp. 565–569, 2013. View at Google Scholar
  4. A. L. Weber and A. C. Stanton, “Malignant tumors of the paranasal sinuses: radiological, clinical, and histopathologic evaluation of 200 cases,” Head and Neck Surgery, vol. 6, no. 3, pp. 761–776, 1984. View at Google Scholar · View at Scopus
  5. M. Iacoangeli, A. Di Rienzo, M. Re et al., “Endoscopic endonasal approach for the treatment of a large clival giant cell tumor complicated by an intraoperative internal carotid artery rupture,” Cancer Management and Research, vol. 5, pp. 21–24, 2013. View at Google Scholar
  6. J. I. Lopez, M. Nevado, B. Eizaguirre, and A. Perez, “Intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. A clinicopathologic study of 6 cases,” Tumori, vol. 76, no. 3, pp. 250–254, 1990. View at Google Scholar · View at Scopus
  7. O. Kleinsasser and H.-G. Schroeder, “Adenocarcinomas of the inner nose after exposure to wood dust: morphological findings and relationships between histopathology and clinical behavior in 79 cases,” Archives of Oto-Rhino-Laryngology, vol. 245, no. 1, pp. 1–15, 1988. View at Google Scholar · View at Scopus
  8. A. Leclerc, M. M. Cortes, M. Gerin, D. Luce, and J. Brugere, “Sinonasal cancer and wood dust exposure: results from a case-control study,” American Journal of Epidemiology, vol. 140, no. 4, pp. 340–349, 1994. View at Google Scholar · View at Scopus
  9. S. D. Stellman, P. A. Demers, D. Colin, and P. Boffetta, “Cancer mortality and wood dust exposure among participants in the American Cancer Society Cancer Prevention Study-II (CPS-II),” American Journal of Industrial Medicine, vol. 34, no. 3, pp. 229–237, 1998. View at Google Scholar
  10. E. H. Hadfield, “A study of adenocarcinoma of the paranasal sinuses in woodworkers in the furniture industry,” Annals of the Royal College of Surgeons of England, vol. 46, no. 6, pp. 301–319, 1970. View at Google Scholar · View at Scopus
  11. C. Klintenberg, J. Olofsson, and H. Hellquist, “Adenocarcinoma of the ethmoid sinuses. A review of 28 cases with special reference to wood dust exposure,” Cancer, vol. 54, no. 3, pp. 482–488, 1984. View at Google Scholar · View at Scopus
  12. L. Barnes, “Intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses,” American Journal of Surgical Pathology, vol. 10, no. 3, pp. 192–202, 1986. View at Google Scholar · View at Scopus
  13. A. Franchi, O. Gallo, and M. Santucci, “Clinical relevance of the histological classification of sinonasal intestinal-type adenocarcinomas,” Human Pathology, vol. 30, no. 10, pp. 1140–1145, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. E. Mills, R. E. Fechner, and R. W. Cantrell, “Aggressive sinonasal lesion resembling normal intestinal mucosa,” American Journal of Surgical Pathology, vol. 6, no. 8, pp. 803–809, 1982. View at Google Scholar · View at Scopus
  15. J. G. Batsakis, B. Mackay, and N. G. Ordonez, “Enteric-type adenocarcinoma of the nasal cavity: an electron microscopic and immunocytochemical study,” Cancer, vol. 54, no. 5, pp. 855–860, 1984. View at Google Scholar · View at Scopus
  16. C. D. McKinney, S. E. Mills, and D. W. Franquemont, “Sinonasal intestinal-type adenocarcinoma: immunohistochemical profile and comparison with colonic adenocarcinoma,” Modern Pathology, vol. 8, no. 4, pp. 421–426, 1995. View at Google Scholar · View at Scopus
  17. A. Franchi, D. Massi, G. Baroni, and M. Santucci, “CDX-2 homeobox gene expression,” American Journal of Surgical Pathology, vol. 27, no. 10, pp. 1390–1391, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. E. R. Fearon and B. Vogelstein, “A genetic model for colorectal tumorigenesis,” Cell, vol. 61, no. 5, pp. 759–767, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. D. C. Chung, “The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis,” Gastroenterology, vol. 119, no. 3, pp. 854–865, 2000. View at Google Scholar · View at Scopus
  20. P. M. Calvert and H. Frucht, “The genetics of colorectal cancer,” Annals of Internal Medicine, vol. 137, no. 7, pp. 603–612, 2002. View at Google Scholar · View at Scopus
  21. A. T. Saber, L. R. Nielsen, M. Dictor, L. Hagmar, Z. Mikoczy, and H. Wallin, “K-ras mutations in sinonasal adenocarcinomas in patients occupationally exposed to wood or leather dust,” Cancer Letters, vol. 126, no. 1, pp. 59–65, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Pérez, O. Dominguez, S. González, A. Triviño, and C. Suárez, “ras gene mutations in ethmoid sinus adenocarcinoma: prognostic implications,” Cancer, vol. 86, no. 2, pp. 255–264, 1999. View at Google Scholar
  23. T.-T. Wu, L. Barnes, A. Bakker, P. A. Swalsky, and S. D. Finkelstein, “K-ras-2 and p53 genotyping of intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses,” Modern Pathology, vol. 9, no. 3, pp. 199–204, 1996. View at Google Scholar · View at Scopus
  24. F. Perrone, M. Oggionni, S. Birindelli et al., “TP53, P14ARF, P16INK4a and H-ras gene molecular analysis in intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses,” International Journal of Cancer, vol. 105, no. 2, pp. 196–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Re, G. Magliulo, P. Tarchini et al., “p53 and Bcl-2 over-expression inversely correlates with histological differentiation in occupational ethmoidal intestinal-type sinonasal adenocarcinoma,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 3, pp. 603–609, 2011. View at Google Scholar · View at Scopus
  26. O. Gallo, A. Franchi, I. Fini-Storchi et al., “Prognostic significance of c-erbB-2 oncoprotein expression in intestinal-type adenocarcinoma of the sinonasal tract,” Head & Neck, vol. 20, no. 3, pp. 224–231, 1998. View at Google Scholar
  27. D. L. Crowe, J. G. Hacia, C.-L. Hsieh, U. K. Sinha, and D. H. Rice, “Molecular pathology of head and neck cancer,” Histology and Histopathology, vol. 17, no. 3, pp. 909–914, 2002. View at Google Scholar · View at Scopus
  28. L. Lo Muzio, A. Santarelli, R. Caltabiano et al., “p63 overexpression associates with poor prognosis in head and neck squamous cell carcinoma,” Human Pathology, vol. 36, no. 2, pp. 187–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Re, G. Magliulo, L. Ferrante et al., “p63 expression in laryngeal squamous cell carcinoma is related to tumor extension, histologic grade, lymph node involvement and clinical stage,” Journal of Biological Regulators & Homeostatic Agents, vol. 27, no. 1, pp. 121–129, 2013. View at Google Scholar
  30. M. Artico, E. Bianchi, G. Magliulo et al., “Neurotrophins, their receptors and KI-67 in human GH-secreting pituitary adenomas: an immunohistochemical analysis,” International Journal of Immunopathology and Pharmacology, vol. 25, no. 1, pp. 117–125, 2012. View at Google Scholar
  31. M. Re, R. Romeo, and V. Mallardi, “Paralateral-nasal malignant schwannoma with rhabdomyoblastic differentiation (Triton tumor). Report of a case,” Acta Otorhinolaryngologica Italica, vol. 22, no. 4, pp. 245–247, 2002. View at Google Scholar · View at Scopus
  32. R. Verdolini, P. Amerio, G. Goteri et al., “Cutaneous carcinomas and preinvasive neoplastic lesions. Role of MMP-2 and MMP-9 metalloproteinases in neoplastic invasion and their relationship with proliferative activity and p53 expression,” Journal of Cutaneous Pathology, vol. 28, no. 3, pp. 120–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. S. R. Wiley, K. Schooley, P. J. Smolak et al., “Identification and characterization of a new member of the TNF family that induces apoptosis,” Immunity, vol. 3, no. 6, pp. 673–682, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Zamai, M. Ahmad, I. M. Bennett, L. Azzoni, E. S. Alnemri, and B. Perussia, “Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells,” Journal of Experimental Medicine, vol. 188, no. 12, pp. 2375–2380, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. T. S. Griffith, S. R. Wiley, M. Z. Kubin, L. M. Sedger, C. R. Maliszewski, and N. A. Fanger, “Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL,” Journal of Experimental Medicine, vol. 189, no. 8, pp. 1343–1353, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. G. S. Wu, “TRAIL as a target in anti-cancer therapy,” Cancer Letters, vol. 285, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Mahalingam, E. Szegezdi, M. Keane, S. D. Jong, and A. Samali, “TRAIL receptor signalling and modulation: are we on the right TRAIL?” Cancer Treatment Reviews, vol. 35, no. 3, pp. 280–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Ashkenazi, P. Holland, and S. G. Eckhardt, “Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL),” Journal of Clinical Oncology, vol. 26, no. 21, pp. 3621–3630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Wang, “The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway,” Oncogene, vol. 27, no. 48, pp. 6207–6215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Kumamoto and K. Ooya, “Expression of tumor necrosis factor α, TNF-related apoptosis-inducing ligand, and their associated molecules in ameloblastomas,” Journal of Oral Pathology and Medicine, vol. 34, no. 5, pp. 287–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Licitra, S. Suardi, P. Bossi et al., “Prediction of TP53 status for primary cisplatin, fluorouracil, and leucovorin chemotherapy in ethmoid sinus intestinal-type adenocarcinoma,” Journal of Clinical Oncology, vol. 22, no. 24, pp. 4901–4906, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Perez-Ordonez, N. N. Huynh, K. W. Berean, and R. C. K. Jordan, “Expression of mismatch repair proteins, β catenin, and E cadherin in intestinal-type sinonasal adenocarcinoma,” Journal of Clinical Pathology, vol. 57, no. 10, pp. 1080–1083, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. T. Kennedy, R. C. K. Jordan, K. W. Berean, and B. Perez-Ordoñez, “Expression pattern of CK7, CK20, CDX-2, and villin in intestinal-type sinonasal adenocarcinoma,” Journal of Clinical Pathology, vol. 57, no. 9, pp. 932–937, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. D. Sanlioglu, E. Dirice, O. Elpek et al., “High TRAIL death receptor 4 and decoy receptor 2 expression correlates with significant cell death in pancreatic ductal adenocarcinoma patients,” Pancreas, vol. 38, no. 2, pp. 154–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Dirice, A. D. Sanlioglu, S. Kahraman et al., “Adenovirus-mediated TRAIL gene (Ad5hTRAIL) delivery into pancreatic islets prolongs normoglycemia in streptozotocin-induced diabetic rats,” Human Gene Therapy, vol. 20, no. 10, pp. 1177–1189, 2009. View at Google Scholar · View at Scopus
  46. S.-S. C. Cheung, D. L. Metzger, X. Wang et al., “Tumor necrosis factor-related apoptosis-inducing ligand and CD56 expression in patients with type 1 diabetes mellitus,” Pancreas, vol. 30, no. 2, pp. 105–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Trauzold, D. Siegmund, B. Schniewind et al., “TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma,” Oncogene, vol. 25, no. 56, pp. 7434–7439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Sträter, U. Hinz, H. Walczak et al., “Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter,” Clinical Cancer Research, vol. 8, no. 12, pp. 3734–3740, 2002. View at Google Scholar · View at Scopus
  49. M. M. McCarthy, M. Sznol, K. A. DiVito, R. L. Camp, D. L. Rimm, and H. M. Kluger, “Evaluating the expression and prognostic value of TRAIL-R1 and TRAIL-R2 in breast cancer,” Clinical Cancer Research, vol. 11, no. 14, pp. 5188–5194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Yoldas, C. Ozer, O. Ozen et al., “Clinical significance of TRAIL and TRAIL receptors in patients with head and neck cancer,” Head & Neck, vol. 33, no. 9, pp. 1278–1284, 2011. View at Publisher · View at Google Scholar · View at Scopus