Table of Contents Author Guidelines Submit a Manuscript
International Journal of Telemedicine and Applications
Volume 2013, Article ID 948087, 6 pages
http://dx.doi.org/10.1155/2013/948087
Research Article

Assistive/Socially Assistive Robotic Platform for Therapy and Recovery: Patient Perspectives

Courage Kenny Research Center, Courage Kenny Rehabilitation Institute, part of Allina Health, Abbott Northwestern Hospital, Mail route 12212, 800 East 28th Street, Suite SK278, Minneapolis, MN 55407, USA

Received 28 June 2013; Accepted 28 November 2013

Academic Editor: Trevor Russell

Copyright © 2013 Matthew White et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. A. Abdullah, C. Tarry, C. Lambert, S. Barreca, and B. O. Allen, “Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit,” Journal of Neuroengineering and Rehabilitation, vol. 8, no. 1, article 50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. S. Conroy, J. Whitall, L. Dipietro et al., “Effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 11, pp. 1754–1761, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. H. Wagner, A. C. Lo, P. Peduzzi et al., “An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke,” Stroke, vol. 42, no. 9, pp. 2630–2632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Norouzi-Gheidari, P. S. Archambault, and J. Fung, “Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature,” Journal of Rehabiltiative Research and Development, vol. 49, pp. 479–496, 2012. View at Google Scholar
  5. P. Gadde, H. Kharrazi, H. Patel, and K. F. MacDorman, “Toward monitoring and increasing exercise adherence in older adults by robotic intervention: a proof of concept study,” Journal of Robotics, vol. 2011, Article ID 438514, 11 pages, 2011. View at Publisher · View at Google Scholar
  6. M. J. Matarić, J. Eriksson, D. J. Feil-Seifer, and C. J. Winstein, “Socially assistive robotics for post-stroke rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 4, article 5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. E. R. Levensky and T. W. O’Donohue, “Patient adherence and nonadherence to treatments: an overview for health care providers,” in Promoting Treatment Adherence, E. R. Levensky and T. W. O’Donohue, Eds., pp. 3–14, Sage, Thousand Oaks, Calif, USA, 2006. View at Google Scholar
  8. World Health Organization, Adherence to Long Term Therapies: Evidence for Action, WHO, Geneva, Switzerland, 2003.
  9. D. X. Cifu, J. S. Kreutzer, S. A. Kolakowsky-Hayner, J. H. Marwitz, and J. Englander, “The relationship between therapy intensity and rehabilitative outcomes after traumatic brain injury: a multicenter analysis,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 10, pp. 1441–1448, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. V. Radomski, “More than good intentions: advancing adherence to therapy recommendations,” American Journal of Occupational Therapy, vol. 65, no. 4, pp. 471–477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. L. I. Oddsson, M. V. Radomski, M. White, and D. Nilsson, “A robotic home telehealth platform system for treatment adherence, social assistance and companionship—an overview,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2009, pp. 6437–6440, 2009.
  12. R. O. Smith, “Technology approaches to performance enhancement,” in Occupational Therapy Overcoming Human Performance Deficits, p. 763, Slack, Thorfare, NJ, USA, 1991. View at Google Scholar