Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2012 (2012), Article ID 293641, 15 pages
http://dx.doi.org/10.1155/2012/293641
Review Article

Signaling Required for Blood Vessel Maintenance: Molecular Basis and Pathological Manifestations

Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA

Received 1 July 2011; Revised 24 August 2011; Accepted 1 September 2011

Academic Editor: John W. Calvert

Copyright © 2012 Masahiro Murakami. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature, vol. 473, no. 7347, pp. 298–307, 2011. View at Publisher · View at Google Scholar
  2. J. R. See, A. M. Marlon, H. L. Feikes, and R. S. Cosby, “Effect of direct revascularization surgery on coronary collateral circulation in man,” American Journal of Cardiology, vol. 36, no. 6, pp. 734–738, 1975. View at Google Scholar · View at Scopus
  3. H. Gerhardt and C. Betsholtz, “Endothelial-pericyte interactions in angiogenesis,” Cell and Tissue Research, vol. 314, no. 1, pp. 15–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Baffert, T. Le, B. Sennino et al., “Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling,” American Journal of Physiology, vol. 290, no. 2, pp. H547–H559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Kamba, B. Y. Y. Tam, H. Hashizume et al., “VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature,” American Journal of Physiology, vol. 290, no. 2, pp. H560–H576, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Kamba and D. M. McDonald, “Mechanisms of adverse effects of anti-VEGF therapy for cancer,” British Journal of Cancer, vol. 96, no. 12, pp. 1788–1795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Carmeliet, M. G. Lampugnani, L. Moons et al., “Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis,” Cell, vol. 98, no. 2, pp. 147–157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Corada, M. Mariotti, G. Thurston et al., “Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 17, pp. 9815–9820, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Murakami and M. Simons, “Regulation of vascular integrity,” Journal of Molecular Medicine, vol. 87, no. 6, pp. 571–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Simons, “Angiogenesis: where do we stand now?” Circulation, vol. 111, no. 12, pp. 1556–1566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Molin and M. J. Post, “Therapeutic angiogenesis in the heart: protect and serve,” Current Opinion in Pharmacology, vol. 7, no. 2, pp. 158–163, 2007. View at Publisher · View at Google Scholar
  12. I. Zachary and R. D. Morgan, “Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects,” Heart, vol. 97, no. 3, pp. 181–189, 2011. View at Publisher · View at Google Scholar
  13. D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. Susan Harvey, and H. F. Dvorak, “Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid,” Science, vol. 219, no. 4587, pp. 983–985, 1983. View at Google Scholar · View at Scopus
  14. R. Cao, A. Eriksson, H. Kubo, K. Alitalo, Y. Cao, and J. Thyberg, “Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis lymphangiogenesis, vascular fenestrations, and permeability,” Circulation Research, vol. 94, no. 5, pp. 664–670, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y.-J. Jih, W.-H. Lien, W.-C. Tsai, G.-W. Yang, C. Li, and L.-W. Wu, “Distinct regulation of genes by bFGF and VEGF-A in endothelial cells,” Angiogenesis, vol. 4, no. 4, pp. 313–321, 2001. View at Publisher · View at Google Scholar
  16. E. Dejana, “Endothelial cell-cell junctions: happy together,” Nature Reviews Molecular Cell Biology, vol. 5, no. 4, pp. 261–270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. E. S. Harris and W. J. Nelson, “VE-cadherin: at the front, center, and sides of endothelial cell organization and function,” Current Opinion in Cell Biology, vol. 22, no. 5, pp. 651–658, 2010. View at Publisher · View at Google Scholar
  18. S. Iden, D. Rehder, B. August et al., “A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells,” EMBO Reports, vol. 7, no. 12, pp. 1239–1246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Taddei, C. Giampietro, A. Conti et al., “Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5,” Nature Cell Biology, vol. 10, no. 8, pp. 923–934, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Vestweber, A. Broermann, and D. Schulte, “Control of endothelial barrier function by regulating vascular endothelial-cadherin,” Current Opinion in Hematology, vol. 17, no. 3, pp. 230–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Armulik, A. Abramsson, and C. Betsholtz, “Endothelial/pericyte interactions,” Circulation Research, vol. 97, no. 6, pp. 512–523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Diaz-Flores, R. Gutierrez, H. Varela, N. Rancel, and F. Valladares, “Microvascular pericytes: a review of their morphological and functional characteristics,” Histology and Histopathology, vol. 6, no. 2, pp. 269–286, 1991. View at Google Scholar · View at Scopus
  23. S. Morikawa, P. Baluk, T. Kaidoh, A. Haskell, R. K. Jain, and D. M. M, “Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors,” American Journal of Pathology, vol. 160, no. 3, pp. 985–1000, 2002. View at Google Scholar · View at Scopus
  24. A. Raza, M. J. Franklin, and A. Z. Dudek, “Pericytes and vessel maturation during tumor angiogenesis and metastasis,” American Journal of Hematology, vol. 85, no. 8, pp. 593–598, 2010. View at Publisher · View at Google Scholar
  25. J. M. Rhodes and M. Simons, “The extracellular matrix and blood vessel formation: not just a scaffold: angiogenesis Review Series,” Journal of Cellular and Molecular Medicine, vol. 11, no. 2, pp. 176–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. G. Arroyo and M. L. Iruela-Arispe, “Extracellular matrix, inflammation, and the angiogenic response,” Cardiovascular Research, vol. 86, no. 2, pp. 226–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. I. Kivirikko, “Collagens and their abnormalities in a wide spectrum of diseases,” Annals of Medicine, vol. 25, no. 2, pp. 113–126, 1993. View at Google Scholar · View at Scopus
  28. J. Golledge, J. Muller, A. Daugherty, and P. Norman, “Abdominal aortic aneurysm: pathogenesis and implications for management,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 12, pp. 2605–2613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. D. Raffetto and R. A. Khalil, “Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease,” Biochemical Pharmacology, vol. 75, no. 2, pp. 346–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Matthew Longo, W. Xiong, T. C. Greiner, Y. Zhao, N. Fiotti, and B. Timothy Baxter, “Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 625–632, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Ikonomidis, J. R. Barbour, Z. Amani et al., “Effects of deletion of the matrix metalloproteinase 9 gene on development of murine thoracic aortic aneurysms,” Circulation, vol. 112, no. 9, supplement, pp. I242–I248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. S. Ikonomidis, W. C. Gibson, J. E. Butler et al., “Effects of deletion of the tissue inhibitor of matrix metalloproteinases-1 gene on the progression of murine thoracic aortic aneurysms,” Circulation, vol. 110, no. 11, supplement, pp. II268–II273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Bergers, R. Brekken, G. McMahon et al., “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis,” Nature Cell Biology, vol. 2, no. 10, pp. 737–744, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Enzerink and A. Vaheri, “Fibroblast activation in vascular inflammation,” Journal of Thrombosis and Haemostasis, vol. 9, no. 4, pp. 619–626, 2011. View at Publisher · View at Google Scholar
  35. S. Chang, B. D. Young, S. Li, X. Qi, J. A. Richardson, and E. N. Olson, “Histone Deacetylase 7 Maintains Vascular Integrity by Repressing Matrix Metalloproteinase 10,” Cell, vol. 126, no. 2, pp. 321–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Chrissobolis, A. A. Miller, G. R. Drummond, B. K. Kemp-Harper, and C. G. Sobey, “Oxidative stress and endothelial dysfunction in cerebrovascular disease,” Frontiers in Bioscience, vol. 16, pp. 1733–1745, 2011. View at Google Scholar
  37. R. A. Cohen and X. Tong, “Vascular oxidative stress: the common link in hypertensive and diabetic vascular disease,” Journal of Cardiovascular Pharmacology, vol. 55, no. 4, pp. 308–316, 2010. View at Publisher · View at Google Scholar
  38. N. K. Tonks, “Protein tyrosine phosphatases: from genes, to function, to disease,” Nature Reviews Molecular Cell Biology, vol. 7, no. 11, pp. 833–846, 2006. View at Publisher · View at Google Scholar
  39. S. Bäumer, L. Keller, A. Holtmann et al., “Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development,” Blood, vol. 107, no. 12, pp. 4754–4762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Nawroth, G. Poell, A. Ranft et al., “VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts,” EMBO Journal, vol. 21, no. 18, pp. 4885–4895, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Ferrara, “VEGF-A: a critical regulator of blood vessel growth,” European Cytokine Network, vol. 20, no. 4, pp. 158–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Ferrara, “Role of vascular endothelial growth factor in regulation of physiological angiogenesis,” American Journal of Physiology, vol. 280, no. 6, pp. C1358–C1366, 2001. View at Google Scholar
  43. S. M. Weis and D. A. Cheresh, “Pathophysiological consequences of VEGF-induced vascular permeability,” Nature, vol. 437, no. 7058, pp. 497–504, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. D. Potter, S. Barbero, and D. A. Cheresh, “Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and β-catenin and maintains the cellular mesenchymal state,” Journal of Biological Chemistry, vol. 280, no. 36, pp. 31906–31912, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Hatanaka, M. Simons, and M. Murakami, “Phosphorylation of VE-cadherin controls endothelial phenotypes via p120-catenin coupling and Rac1 activation,” American Journal of Physiology, vol. 300, no. 1, pp. H162–H172, 2011. View at Publisher · View at Google Scholar
  46. M. G. Lampugnani, F. Orsenigo, M. C. Gagliani, C. Tacchetti, and E. Dejana, “Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments,” Journal of Cell Biology, vol. 174, no. 4, pp. 593–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Tzima, M. Irani-Tehrani, W. B. Kiosses et al., “A mechanosensory complex that mediates the endothelial cell response to fluid shear stress,” Nature, vol. 437, no. 7057, pp. 426–431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Zachary, A. Mathur, S. Yla-Herttuala, and J. Martin, “Vascular protection: a novel nonangiogenic cardiovascular role for vascular endothelial growth factor,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 6, pp. 1512–1520, 2000. View at Google Scholar · View at Scopus
  49. E. Gkaliagkousi and A. Ferro, “Nitric oxide signalling in the regulation of cardiovascular and platelet function,” Frontiers in Bioscience, vol. 16, no. 5, pp. 1873–1897, 2011. View at Publisher · View at Google Scholar
  50. V. W.T. Liu and P. L. Huang, “Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice,” Cardiovascular Research, vol. 77, no. 1, pp. 19–29, 2008. View at Publisher · View at Google Scholar
  51. J. Luo, Y. Xiong, X. Han, and Y. Lu, “VEGF non-angiogenic functions in adult organ homeostasis: therapeutic implications,” Journal of Molecular Medicine, vol. 89, no. 7, pp. 635–645, 2011. View at Google Scholar
  52. K. Matsushita, C. N. Morrell, B. Cambien et al., “Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor,” Cell, vol. 115, no. 2, pp. 139–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Lee, T. T. Chen, C. L. Barber et al., “Autocrine VEGF Signaling Is Required for Vascular Homeostasis,” Cell, vol. 130, no. 4, pp. 691–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. H. H. Chang, A. M. Bennett, and Z.-G. Jin, “A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor,” Journal of Biological Chemistry, vol. 283, no. 11, pp. 7261–7270, 2008. View at Publisher · View at Google Scholar
  55. A. A. Lanahan, K. Hermans, F. Claes et al., “VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis,” Developmental Cell, vol. 18, no. 5, pp. 713–724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. B. J. Dickson and G. F. Gilestro, “Regulation of commissural axon pathfinding by Slit and its Robo receptors,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 651–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. A. W. Koch, T. Mathivet, B. Larrivée et al., “Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B,” Developmental Cell, vol. 20, no. 1, pp. 33–46, 2011. View at Publisher · View at Google Scholar
  58. P. Carmeliet and R. K. Jain, “Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases,” Nature Reviews Drug Discovery, vol. 10, no. 6, pp. 417–427, 2011. View at Publisher · View at Google Scholar
  59. N. Ferrara and K. Alitalo, “Clinical applications of angiogenic growth factors and their inhibitors,” Nature Medicine, vol. 5, no. 12, pp. 1359–1364, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Lohela, M. Bry, T. Tammela, and K. Alitalo, “VEGFs and receptors involved in angiogenesis versus lymphangiogenesis,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 154–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. R. K. Jain, “Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy,” Science, vol. 307, no. 5706, pp. 58–62, 2005. View at Publisher · View at Google Scholar
  62. C. Stockmann, A. Doedens, A. Weidemann et al., “Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis,” Nature, vol. 456, no. 7223, pp. 814–819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. K. De Bock, S. Cauwenberghs, and P. Carmeliet, “Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications,” Current Opinion in Genetics and Development, vol. 21, no. 1, pp. 73–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Beenken and M. Mohammadi, “The FGF family: biology, pathophysiology and therapy,” Nature Reviews Drug Discovery, vol. 8, no. 3, pp. 235–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. C. J. Powers, S. W. McLeskey, and A. Wellstein, “Fibroblast growth factors, their receptors and signaling,” Endocrine-Related Cancer, vol. 7, no. 3, pp. 165–197, 2000. View at Google Scholar · View at Scopus
  66. C. H. Chen, S. M. Poucher, J. Lu, and P. D. Henry, “Fibroblast growth factor 2: from laboratory evidence to clinical application,” Current Vascular Pharmacology, vol. 2, no. 1, pp. 33–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Presta, P. Dell'Era, S. Mitola, E. Moroni, R. Ronca, and M. Rusnati, “Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis,” Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 159–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Murakami and M. Simons, “Fibroblast growth factor regulation of neovascularization,” Current Opinion in Hematology, vol. 15, no. 3, pp. 215–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. D. L. Miller, S. Ortega, O. Bashayan, R. Basch, and C. Basilico, “Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice,” Molecular and Cellular Biology, vol. 20, no. 6, pp. 2260–2268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. K. J. Lavine, A. C. White, C. Park et al., “Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development,” Genes and Development, vol. 20, no. 12, pp. 1651–1666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Murakami, L. T. Nguyen, Z. W. Zhuang et al., “The FGF system has a key role in regulating vascular integrity,” Journal of Clinical Investigation, vol. 118, no. 10, pp. 3355–3366, 2008. View at Publisher · View at Google Scholar
  72. M. Murakami, L. T. Nguyen, K. Hatanaka et al., “FGF-dependent regulation of VEGF receptor 2 expression in mice,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2668–2678, 2011. View at Publisher · View at Google Scholar
  73. P. Saharinen, M. Bry, and K. Alitalo, “How do angiopoietins Tie in with vascular endothelial growth factors?” Current Opinion in Hematology, vol. 17, no. 3, pp. 198–205, 2010. View at Google Scholar
  74. G. Thurston, J. S. Rudge, E. Ioffe et al., “Angiopoietin-1 protects the adult vasculature against plasma leakage,” Nature Medicine, vol. 6, no. 4, pp. 460–463, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Huang, A. Bhat, G. Woodnutt, and R. Lappe, “Targeting the ANGPT-TIE2 pathway in malignancy,” Nature Reviews Cancer, vol. 10, no. 8, pp. 575–585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Jeansson, A. Gawlik, G. Anderson et al., “Angiopoietin-1 is essential in mouse vasculature during development and in response to injury,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2278–2289, 2011. View at Publisher · View at Google Scholar
  77. J. Gavard, V. Patel, and J. S. Gutkind, “Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia,” Developmental Cell, vol. 14, no. 1, pp. 25–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Fukuhara, K. Sako, T. Minami et al., “Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1,” Nature Cell Biology, vol. 10, no. 5, pp. 513–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Saharinen, L. Eklund, J. Miettinen et al., “Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts,” Nature Cell Biology, vol. 10, no. 5, pp. 527–537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Skoura and T. Hla, “Lysophospholipid receptors in vertebrate development, physiology, and pathology,” Journal of Lipid Research, vol. 50, supplement, pp. S293–S298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. D. J. Swan, J. A. Kirby, and S. Ali, “Vascular biology: the role of sphingosine 1-phosphate in both the resting state and inflammation,” Journal of Cellular and Molecular Medicine, vol. 14, no. 9, pp. 2211–2222, 2010. View at Publisher · View at Google Scholar
  82. T. Hla, “Physiological and pathological actions of sphingosine 1-phosphate,” Seminars in Cell and Developmental Biology, vol. 15, no. 5, pp. 513–520, 2004. View at Publisher · View at Google Scholar
  83. J. G. N. Garcia, F. Liu, A. D. Verin et al., “Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement,” Journal of Clinical Investigation, vol. 108, no. 5, pp. 689–701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Sanchez, T. Estrada-Hernandez, J. H. Paik et al., “Phosphosrylation and action of the immunomodulator FTY720 inhibits 'vascular endothelial cell growth factor-induced vascular permeability,” Journal of Biological Chemistry, vol. 278, no. 47, pp. 47281–47290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. M. G. Sanna, S. K. Wang, P. J. Gonzalez-Cabrera et al., “Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo,” Nature Chemical Biology, vol. 2, no. 8, pp. 434–441, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. M. L. Oo, S.-H. Chang, S. Thangada et al., “Engagement of S1P1-degradative mechanisms leads to vascular leak in mice,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2290–2300, 2011. View at Publisher · View at Google Scholar
  87. Y. Liu, R. Wada, T. Yamashita et al., “Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation,” Journal of Clinical Investigation, vol. 106, no. 8, pp. 951–961, 2000. View at Google Scholar · View at Scopus
  88. M. L. Allende, T. Yamashita, and R. L. Proia, “G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation,” Blood, vol. 102, no. 10, pp. 3665–3667, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Gerhardt, H. Wolburg, and C. Redies, “N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken,” Developmental Dynamics, vol. 218, no. 3, pp. 472–479, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Tillet, D. Vittet, O. Féraud, R. Moore, R. Kemler, and P. Huber, “N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis,” Experimental Cell Research, vol. 310, no. 2, pp. 392–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. J. H. Paik, A. Skoura, S. S. Chae et al., “Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization,” Genes and Development, vol. 18, no. 19, pp. 2392–2403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Andrae, R. Gallini, and C. Betsholtz, “Role of platelet-derived growth factors in physiology and medicine,” Genes and Development, vol. 22, no. 10, pp. 1276–1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. L. Fredriksson, H. Li, and U. Eriksson, “The PDGF family: four gene products form five dimeric isoforms,” Cytokine and Growth Factor Reviews, vol. 15, no. 4, pp. 197–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Hellström, M. Kalén, P. Lindahl, A. Abramsson, and C. Betsholtz, “Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse,” Development, vol. 126, no. 14, pp. 3047–3055, 1999. View at Google Scholar · View at Scopus
  95. P. Lindahl, B. R. Johansson, P. Levéen, and C. Betsholtz, “Pericyte loss and microaneurysm formation in PDGF-B-deficient mice,” Science, vol. 277, no. 5323, pp. 242–245, 1997. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Bjarnegård, M. Enge, J. Norlin et al., “Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities,” Development, vol. 131, no. 8, pp. 1847–1857, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Hellström, H. Gerhardt, M. Kalén et al., “Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis,” Journal of Cell Biology, vol. 152, no. 3, pp. 543–553, 2001. View at Google Scholar · View at Scopus
  98. A. Armulik, G. Genové, M. Mäe et al., “Pericytes regulate the blood-brain barrier,” Nature, vol. 468, no. 7323, pp. 557–561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Daneman, L. Zhou, A. A. Kebede, and B. A. Barres, “Pericytes are required for blood—brain barrier integrity during embryogenesis,” Nature, vol. 468, no. 7323, pp. 562–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. E. Pardali, M.-J. Goumans, and P. ten Dijke, “Signaling by members of the TGF-β family in vascular morphogenesis and disease,” Trends in Cell Biology, vol. 20, no. 9, pp. 556–567, 2010. View at Publisher · View at Google Scholar
  101. Y. Sato and D. B. Rifkin, “Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-β1-like molecule by plasmin during co-culture,” Journal of Cell Biology, vol. 109, no. 1, pp. 309–315, 1989. View at Google Scholar
  102. S. J. Mandriota, P. A. Menoud, and M. S. Pepper, “Transforming growth factor β1 down-regulates vascular endothelial growth factor receptor 2/flk-1 expression in vascular endothelial cells,” Journal of Biological Chemistry, vol. 271, no. 19, pp. 11500–11505, 1996. View at Publisher · View at Google Scholar · View at Scopus
  103. M. C. Dickson, J. S. Martin, F. M. Cousins, A. B. Kulkarni, S. Karlsson, and R. J. Akhurst, “Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice,” Development, vol. 121, no. 6, pp. 1845–1854, 1995. View at Google Scholar · View at Scopus
  104. R. L. C. Carvalho, F. Itoh, M. J. Goumans et al., “Compensatory signalling induced in the yolk sac vasculature by deletion of TGFβ receptors in mice,” Journal of Cell Science, vol. 120, no. 24, pp. 4269–4277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Wurdak, L. M. Ittner, K. S. Lang et al., “Inactivation of TGFβ signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome,” Genes and Development, vol. 19, no. 5, pp. 530–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Gridley, “Notch signaling in the vasculature,” Current Topics in Developmental Biology, vol. 92, no. C, pp. 277–309, 2010. View at Publisher · View at Google Scholar
  107. L.-K. Phng and H. Gerhardt, “Angiogenesis: a team effort coordinated by notch,” Developmental Cell, vol. 16, no. 2, pp. 196–208, 2009. View at Publisher · View at Google Scholar
  108. N. W. Gale, M. G. Dominguez, I. Noguera et al., “Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 45, pp. 15949–15954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. F. P. Limbourg, K. Takeshita, F. Radtke, R. T. Bronson, M. T. Chin, and J. K. Liao, “Essential role of endothelial Notch1 in angiogenesis,” Circulation, vol. 111, no. 14, pp. 1826–1832, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Grego-Bessa, L. Luna-Zurita, G. del Monte et al., “Notch signaling is essential for ventricular chamber development,” Developmental Cell, vol. 12, no. 3, pp. 415–429, 2007. View at Publisher · View at Google Scholar
  111. H. Gerhardt, M. Golding, M. Fruttiger et al., “VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia,” Journal of Cell Biology, vol. 161, no. 6, pp. 1163–1177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. H. M. Eilken and R. H. Adams, “Dynamics of endothelial cell behavior in sprouting angiogenesis,” Current Opinion in Cell Biology, vol. 22, no. 5, pp. 617–625, 2010. View at Publisher · View at Google Scholar
  113. M. Hellström, L.-K. Phng, J. J. Hofmann et al., “Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis,” Nature, vol. 445, no. 7129, pp. 776–780, 2007. View at Publisher · View at Google Scholar
  114. L. K. Phng, M. Potente, J. D. Leslie et al., “Nrarp Coordinates Endothelial Notch and Wnt Signaling to Control Vessel Density in Angiogenesis,” Developmental Cell, vol. 16, no. 1, pp. 70–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. V. Domenga, P. Fardoux, P. Lacombe et al., “Notch3 is required for arterial identity and maturation of vascular smooth muscle cells,” Genes and Development, vol. 18, no. 22, pp. 2730–2735, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Liu, S. Kennard, and B. Lilly, “NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires Endothelial-expressed JAGGED1,” Circulation Research, vol. 104, no. 4, pp. 466–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. F. A. High, M. L. Min, W. S. Pear, K. M. Loomes, K. H. Kaestner, and J. A. Epstein, “Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 6, pp. 1955–1959, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. J. M. Mullin, N. Agostino, E. Rendon-Huerta, and J. J. Thornton, “Keynote review: epithelial and endothelial barriers in human disease,” Drug Discovery Today, vol. 10, no. 6, pp. 395–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. E. Dejana, E. Tournier-Lasserve, and B. M. Weinstein, “The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications,” Developmental Cell, vol. 16, no. 2, pp. 209–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. C. L. Shovlin, “Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment,” Blood Reviews, vol. 24, no. 6, pp. 203–219, 2010. View at Publisher · View at Google Scholar
  121. M. C. P. Smith, D. Y. Li, and K. J. Whitehead, “Mechanisms of vascular stability and the relationship to human disease,” Current Opinion in Hematology, vol. 17, no. 3, pp. 237–244, 2010. View at Publisher · View at Google Scholar
  122. Y. Yamamoto, L. Craggs, M. Baumann, H. Kalimo, and R. N. Kalaria, “Molecular genetics and pathology of hereditary small vessel diseases of the brain,” Neuropathology and Applied Neurobiology, vol. 37, no. 1, pp. 94–113, 2011. View at Publisher · View at Google Scholar
  123. M. Vikkula, L. M. Boon, K. L. Carraway et al., “Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2,” Cell, vol. 87, no. 7, pp. 1181–1190, 1996. View at Publisher · View at Google Scholar · View at Scopus
  124. N. Limaye, V. Wouters, M. Uebelhoer et al., “Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations,” Nature Genetics, vol. 41, no. 1, pp. 118–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Dupuis-Girod, S. Bailly, and H. Plauchu, “Hereditary hemorrhagic telangiectasia: from molecular biology to patient care,” Journal of Thrombosis and Haemostasis, vol. 8, no. 7, pp. 1447–1456, 2010. View at Publisher · View at Google Scholar
  126. A. Bourdeau, D. J. Dumont, and M. Letarte, “A murine model of hereditary hemorrhagic telangiectasia,” Journal of Clinical Investigation, vol. 104, no. 10, pp. 1343–1351, 1999. View at Google Scholar · View at Scopus
  127. S. O. Park, M. Wankhede, J. L. Young et al., “Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia,” Journal of Clinical Investigation, vol. 119, no. 11, pp. 3487–3496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Letarte, M. L. McDonald, C. Li et al., “Reduced endothelial secretion and plasma levels of transforming growth factor-β1 in patients with hereditary hemorrhagic telangiectasia type 1,” Cardiovascular Research, vol. 68, no. 1, pp. 155–164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. R. L. C. Carvalho, L. Jonker, M. J. Goumans et al., “Defective paracrine signalling by TGFβ in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia,” Development, vol. 131, no. 24, pp. 6237–6247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. F. Lebrin, S. Srun, K. Raymond et al., “Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia,” Nature Medicine, vol. 16, no. 4, pp. 420–428, 2010. View at Publisher · View at Google Scholar
  131. F. Riant, F. Bergametti, X. Ayrignac, G. Boulday, and E. Tournier-Lasserve, “Recent insights into cerebral cavernous malformations: the molecular genetics of CCM,” FEBS Journal, vol. 277, no. 5, pp. 1070–1075, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Labauge, C. Denier, F. Bergametti, and E. Tournier-Lasserve, “Genetics of cavernous angiomas,” Lancet Neurology, vol. 6, no. 3, pp. 237–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. T. L. Hilder, M. H. Malone, S. Bencharit et al., “Proteomic identification of the cerebral cavernous malformation signaling complex,” Journal of Proteome Research, vol. 6, no. 11, pp. 4343–4355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. R. A. Stockton, R. Shenkar, I. A. Awad, and M. H. Ginsberg, “Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity,” Journal of Experimental Medicine, vol. 207, no. 4, pp. 881–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Glading, J. Han, R. A. Stockton, and M. H. Ginsberg, “KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell-cell junctions,” Journal of Cell Biology, vol. 179, no. 2, pp. 247–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. B. Kleaveland, X. Zheng, J. J. Liu et al., “Regulation of cardiovascular development and integrity by the heart of glass- cerebral cavernous malformation protein pathway,” Nature Medicine, vol. 15, no. 2, pp. 169–176, 2009. View at Google Scholar
  137. K. J. Whitehead, A. C. Chan, S. Navankasattusas et al., “The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases,” Nature Medicine, vol. 15, no. 2, pp. 177–184, 2009. View at Google Scholar
  138. Y. He, H. Zhang, L. Yu et al., “Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development,” Science Signaling, vol. 3, no. 116, p. ra26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. L. M. Boon, J. B. Mulliken, and M. Vikkula, “RASA1: variable phenotype with capillary and arteriovenous malformations,” Current Opinion in Genetics and Development, vol. 15, no. 3, pp. 265–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Settleman, C. F. Albright, L. C. Foster, and R. A. Weinberg, “Association between GTPase activators for Rho and Ras families,” Nature, vol. 359, no. 6391, pp. 153–154, 1992. View at Publisher · View at Google Scholar · View at Scopus
  141. G. A. Wildenberg, M. R. Dohn, R. H. Carnahan et al., “p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho,” Cell, vol. 127, no. 5, pp. 1027–1039, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. H. Chabriat, A. Joutel, M. Dichgans, E. Tournier-Lasserve, and M. G. Bousser, “CADASIL,” The Lancet Neurology, vol. 8, no. 7, pp. 643–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. H. Kalimo, M. M. Ruchoux, M. Viitanen, and R. N. Kalaria, “CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia,” Brain Pathology, vol. 12, no. 3, pp. 371–384, 2002. View at Google Scholar · View at Scopus
  144. H. Karlström, P. Beatus, K. Dannaeus, G. Chapman, U. Lendahl, and J. Lundkvist, “A CADASIL-mutated Notch 3 receptor exhibits impaired intracellular trafficking and maturation but normal ligand-induced signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 17119–17124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Joutel, M. Monet, V. Domenga, F. Riant, and E. Tournier-Lasserve, “Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect jagged1 binding and notch3 activity via the RBP/JK signaling pathway,” American Journal of Human Genetics, vol. 74, no. 2, pp. 338–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. N. D. Lawson, N. Scheer, V. N. Pham et al., “Notch signaling is required for arterial-venous differentiation during embryonic vascular development,” Development, vol. 128, no. 19, pp. 3675–3683, 2001. View at Google Scholar · View at Scopus
  147. H. Uyttendaele, J. Ho, J. Rossant, and J. Kitajewski, “Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5643–5648, 2001. View at Publisher · View at Google Scholar · View at Scopus
  148. T. R. Carlson, Y. Yan, X. Wu et al., “Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 28, pp. 9884–9889, 2005. View at Publisher · View at Google Scholar · View at Scopus
  149. P. A. Murphy, M. T. Y. Lam, X. Wu et al., “Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 31, pp. 10901–10906, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. Q. Zhuge, M. Zhong, W. Zheng et al., “Notch-1 signalling is activated in brain arteriovenous malformations in humans,” Brain, vol. 132, no. 12, pp. 3231–3241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. L. T. Krebs, C. Starling, A. V. Chervonsky, and T. Gridley, “Notch1 activation in mice causes arteriovenous malformations phenocopied by EphrinB2 and EphB4 mutants,” Genesis, vol. 48, no. 3, pp. 146–150, 2010. View at Publisher · View at Google Scholar · View at Scopus