Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2012, Article ID 647689, 8 pages
http://dx.doi.org/10.1155/2012/647689
Research Article

A Diet Enriched in Docosahexanoic Acid Exacerbates Brain Parenchymal Extravasation of Apo B Lipoproteins Induced by Chronic Ingestion of Saturated Fats

1Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Western Australia 6845, Australia
2Centre for Metabolic Fitness, Australian Technology Network Universities, Perth, Western Australia 6845, Australia

Received 27 May 2011; Revised 4 August 2011; Accepted 26 August 2011

Academic Editor: Spencer D. Proctor

Copyright © 2012 Menuka M. Pallebage-Gamarallage et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Grant, “Dietary links to Alzheimer's disease,” Alzheimer's Disease Review, vol. 2, pp. 42–55, 1997. View at Google Scholar
  2. S. Kalmijn, L. J. Launer, A. Ott, J. C. M. Witteman, A. Hofman, and M. M. B. Breteler, “Dietary fat intake and the risk of incident dementia in the Rotterdam study,” Annals of Neurology, vol. 42, no. 5, pp. 776–782, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. P. Barberger-Gateau, L. Letenneur, V. Deschamps, K. Pérès, J. F. Dartigues, and S. Renaud, “Fish, meat, and risk of dementia: cohort study,” British Medical Journal, vol. 325, no. 7370, pp. 932–933, 2002. View at Google Scholar · View at Scopus
  4. M. C. Morris, D. A. Evans, J. L. Bienias et al., “Dietary fats and the risk of incident Alzheimer disease,” Archives of Neurology, vol. 60, no. 2, pp. 194–200, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Ferrucci, A. Cherubini, S. Bandinelli et al., “Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 439–446, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. C. Dyall, “Amyloid-beta peptide, oxidative stress and inflammation in Alzheimer's disease: potential neuroprotective effects of omega-3 polyunsaturated fatty acids,” International Journal of Alzheimer's Disease, vol. 2010, Article ID 274128, 20 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Vedin, T. Cederholm, Y. F. Levi et al., “Effects of docosahexaenoic acid-rich n-3 fatty acid supplementation on cytokine release from blood mononuclear leukocytes: the OmegAD study,” American Journal of Clinical Nutrition, vol. 87, no. 6, pp. 1616–1622, 2008. View at Google Scholar · View at Scopus
  8. L. Pastorino and K. P. Lu, “Pathogenic mechanisms in Alzheimer's disease,” European Journal of Pharmacology, vol. 545, no. 1, pp. 29–38, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. Fukuoka, H. Nakayama, and K. Doi, “Immunohistochemical detection of b-amyloid and β-amyloid precursor protein in the canine brain and non-neuronal epithelial tissues,” Amyloid, vol. 11, no. 3, pp. 173–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. P. Burns, W. J. Noble, V. Olm et al., “Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques,” Molecular Brain Research, vol. 110, no. 1, pp. 119–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. E. Golde, S. Estus, L. H. Younkin, D. J. Selkoe, and S. G. Younkin, “Processing of the amyloid protein precursor to potentially amyloidogenic derivatives,” Science, vol. 255, no. 5045, pp. 728–730, 1992. View at Google Scholar · View at Scopus
  12. C. Haass, E. H. Koo, A. Mellon, A. Y. Hung, and D. J. Selkoe, “Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments,” Nature, vol. 357, no. 6378, pp. 500–503, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. L. M. Refolo, M. A. Pappolla, B. Malester et al., “Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model,” Neurobiology of Disease, vol. 7, no. 4, pp. 321–331, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. S. Crossgrove, G. J. Li, and W. Zheng, “The choroid plexus removes β-amyloid from brain cerebrospinal fluid,” Experimental Biology and Medicine, vol. 230, no. 10, pp. 771–776, 2005. View at Google Scholar · View at Scopus
  15. R. Deane, A. Sagare, K. Hamm et al., “IgG-assisted age-dependent clearance of Alzheimer's amyloid beta peptide by the blood-brain barrier neonatal Fc receptor,” Journal of Neuroscience, vol. 25, no. 50, pp. 11495–11503, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. T. Thomas, C. McLendon, E. T. Sutton, and G. Thomas, “Cerebrovascular endothelial dysfunction mediated by β-amyloid,” NeuroReport, vol. 8, no. 6, pp. 1387–1391, 1997. View at Google Scholar · View at Scopus
  17. B. Zlokovic, J. Ghiso, J. Mackic, J. McComb, M. Weiss, and B. Frangione, “Blood-brain barrier transport of circulating Alzheimer's amyloid beta,” Biochemical and Biophysical Research Communications, vol. 197, no. 3, pp. 1034–1040, 1993. View at Google Scholar
  18. G. C. Su, G. W. Arendash, R. N. Kalaria, K. B. Bjugstad, and M. Mullan, “Intravascular infusions of soluble β-amyloid compromise the blood-brain barrier, activate CNS glial cells and induce peripheral hemorrhage,” Brain Research, vol. 818, no. 1, pp. 105–117, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. S. L. Smith, P. K. Andrus, J. R. Zhang, and E. D. Hall, “Direct measurement of hydroxyl radicals, lipid peroxidation, and blood- brain barrier disruption following unilateral cortical impact head injury in the rat,” Journal of Neurotrauma, vol. 11, no. 4, pp. 393–404, 1994. View at Google Scholar · View at Scopus
  20. S. Galloway, L. Jian, R. Johnsen, S. Chew, and J. C. L. Mamo, “β-Amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding,” Journal of Nutritional Biochemistry, vol. 18, no. 4, pp. 279–284, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. E. Roher, C. L. Esh, T. A. Kokjohn et al., “Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease,” Alzheimer's and Dementia, vol. 5, no. 1, pp. 18–29, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. Y. Kuo, M. Emmerling, H. Lampert et al., “High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer's disease,” Biochemical and Biophysical Research Communications, vol. 257, no. 3, pp. 787–791, 1999. View at Google Scholar
  23. A. P. James, S. Pal, H. C. Gennat, D. F. Vine, and J. C. L. Mamo, “The incorporation and metabolism of amyloid-β into chylomicron-like lipid emulsions,” Journal of Alzheimer's Disease, vol. 5, no. 3, pp. 179–188, 2003. View at Google Scholar · View at Scopus
  24. B. L. Burgess, S. A. McIsaac, K. E. Naus et al., “Elevated plasma triglyceride levels precede amyloid deposition in Alzheimer's disease mouse models with abundant Aβ in plasma,” Neurobiology of Disease, vol. 24, no. 1, pp. 114–127, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. Ujiie, D. L. Dickstein, D. A. Carlow, and W. A. Jefferies, “Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model,” Microcirculation, vol. 10, no. 6, pp. 463–470, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. C. L. Mamo, L. Jian, A. P. James, L. Flicker, H. Esselmann, and J. Wiltfang, “Plasma lipoprotein β-amyloid in subjects with Alzheimer's disease or mild cognitive impairment,” Annals of Clinical Biochemistry, vol. 45, no. 4, pp. 395–403, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. Y. Namba, H. Tsuchiya, and K. Ikeda, “Apolipoprotein B immunoreactivity in senile plaque and vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer's disease,” Neuroscience Letters, vol. 134, no. 2, pp. 264–266, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Takechi, S. Galloway, M. M. S. Pallebage-Gamarallage et al., “Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-,” British Journal of Nutrition, vol. 103, no. 5, pp. 652–662, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. R. Takechi, S. Galloway, M. M. S. Pallebage-Gamarallage, V. Lam, and J. C. L. Mamo, “Dietary fats, cerebrovasculature integrity and Alzheimer's disease risk,” Progress in Lipid Research, vol. 49, no. 2, pp. 159–170, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. N. Morgan, “Fatty acids and beta-cell toxicity,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 2, pp. 117–122, 2009. View at Google Scholar
  31. S. R. Chavali, W. W. Zhong, and R. A. Forse, “Dietary α-lenolenic acid increases TNF-α, and decreases IL-6, IL-10 in response to LPS: effects of sesamin on the A-5 desaturation of ω6 and ω3 fatty acids in mice,” Prostaglandins Leukot Essent Fatty Acids, vol. 58, no. 3, pp. 185–191, 1998. View at Google Scholar
  32. N. M. Jeffery, E. A. Newsholme, and P. C. Calder, “Level of polyunsaturated fatty acids and the n-6 to n-3 polyunsaturated fatty acid ratio in the rat diet alter serum lipid levels and lymphocyte functions,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 57, no. 2, pp. 149–160, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. L. S. Rallidis, G. Paschos, G. K. Liakos, A. H. Velissaridou, G. Anastasiadis, and A. Zampelas, “Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients,” Atherosclerosis, vol. 167, no. 2, pp. 237–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. B. T. Hawkins and T. P. Davis, “The blood-brain barrier/neurovascular unit in health and disease,” Pharmacological Reviews, vol. 57, no. 2, pp. 173–185, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Galloway, R. Takechi, M. M. S. Pallebage-Gamarallage, S. S. Dhaliwal, and J. C. L. Mamo, “Amyloid-beta colocalizes with apolipoprotein B in absorptive cells of the small intestine,” Lipids in Health and Disease, vol. 8, no. 1, article 46, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. K. Roberts, R. J. Barnard, K. H. Liang, and N. D. Vaziri, “Effect of diet on adipose tissue and skeletal muscle VLDL receptor and LPL: implications for obesity and hyperlipidemia,” Atherosclerosis, vol. 161, no. 1, pp. 133–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. K. C. Hayes, P. Khosla, T. Hajri, and A. Pronczuk, “Saturated fatty acids and LDL receptor modulation in humans and monkeys,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 57, no. 4-5, pp. 411–418, 1997. View at Google Scholar · View at Scopus
  38. Y. Park, P. G. Jones, and W. S. Harris, “Triacylglycerol-rich lipoprotein margination: a potential surrogate for whole-body lipoprotein lipase activity and effects of eicosapentaenoic and docosahexaenoic acids,” American Journal of Clinical Nutrition, vol. 80, no. 1, pp. 45–50, 2004. View at Google Scholar · View at Scopus
  39. Y. Park and W. S. Harris, “Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance,” Journal of Lipid Research, vol. 44, no. 3, pp. 455–463, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. L. Eiselein, D. W. Wilson, M. W. Lamé, and J. C. Rutledge, “Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis,” American Journal of Physiology, vol. 292, no. 6, pp. H2745–H2753, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. K. C. Maki, M. E. Van Elswyk, D. McCarthy et al., “Lipid responses in mildly hypertriglyceridemic men and women to consumption of docosahexaenoic acid-enriched eggs,” International Journal for Vitamin and Nutrition Research, vol. 73, no. 5, pp. 357–368, 2003. View at Google Scholar · View at Scopus
  42. N. D. Riediger, R. Othman, E. Fitz, G. N. Pierce, M. Suh, and M. H. Moghadasian, “Low n-6:n-3 fatty acid ratio, with fish- or flaxseed oil, in a high fat diet improves plasma lipids and beneficially alters tissue fatty acid composition in mice,” European Journal of Nutrition, vol. 47, no. 3, pp. 153–160, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. L. Calabresi, B. Villa, M. Canavesi et al., “An omega-3 polyunsaturated fatty acid concentrate increases plasma high-density lipoprotein 2 cholesterol and paraoxonase levels in patients with familial combined hyperlipidemia,” Metabolismml, vol. 53, no. 2, pp. 153–158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. E. A. Almeida, R. A. Morales, and M. R. Ozaki, “Endothelial dysfunction, lipid peroxidation and cholesterol level in rabbit arteries: relationship to progressive hypercholesterolemia,” Clinica e Investigacion en Arteriosclerosis, vol. 19, no. 6, pp. 293–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Hennig, M. Toborek, and C. J. McClain, “High-energy diets, fatty acids and endothelial cell function: implications for atherosclerosis,” Journal of the American College of Nutrition, vol. 20, no. 2, pp. 97–105, 2001. View at Google Scholar · View at Scopus
  46. P. M. Yao and I. Tabas, “Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway,” Journal of Biological Chemistry, vol. 276, no. 45, pp. 42468–42476, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. S. K. Peng, P. Tham, C. B. Taylor, and B. Mikkelson, “Cytotoxicity of oxidation derivatives of cholesterol on cultured aortic smooth muscle cells and their effect on cholesterol biosynthesis,” American Journal of Clinical Nutrition, vol. 32, no. 5, pp. 1033–1042, 1979. View at Google Scholar · View at Scopus
  48. Y. T. Kuo, P. W. So, J. R. Parkinson et al., “The combined effects on neuronal activation and blood-brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI,” NeuroImage, vol. 50, no. 4, pp. 1384–1391, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. A. Garrido, M. Garate, R. Campos, A. Villa, S. Nieto, and A. Valenzuela, “Increased susceptibility of cellular membranes to the induction of oxidative stress after ingestion of high doses of fish oil: effect of aging and protective action of dl-a tocopherol supplementation,” Journal of Nutritional Biochemistry, vol. 4, no. 2, pp. 118–122, 1993. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Garrido, F. Garrido, R. Guerra, and A. Valenzuela, “Ingestion of high doses of fish oil increases the susceptibility of cellular membranes to the induction of oxidative stress,” Lipids, vol. 24, no. 9, pp. 833–835, 1989. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Kikugawa, Y. Yasuhara, K. Ando, K. Koyama, K. Hiramoto, and M. Suzuki, “Effect of supplementation of n-3 polyunsaturated fatty acids on oxidative stress-induced DNA damage of rat hepatocytes,” Biological and Pharmaceutical Bulletin, vol. 26, no. 9, pp. 1239–1244, 2003. View at Google Scholar · View at Scopus
  52. M. Artwohl, A. Lindenmair, V. Sexl et al., “Different mechanisms of saturated versus polyunsaturated FFA-induced apoptosis in human endothelial cells,” Journal of Lipid Research, vol. 49, no. 12, pp. 2627–2640, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. D. A. Healy, R. W. G. Watson, and P. Newsholme, “Polyunsaturated and monounsaturated fatty acids increase neutral lipid accumulation, caspase activation and apoptosis in a neutrophil-like, differentiated hl-60 cell line,” Clinical Science, vol. 104, no. 2, pp. 171–179, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus