Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2012, Article ID 949672, 3 pages
http://dx.doi.org/10.1155/2012/949672
Review Article

The Role of Bile Acid Excretion in Atherosclerotic Coronary Artery Disease

Department of Internal Medicine “C”, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel

Received 30 May 2011; Accepted 14 July 2011

Academic Editor: John C. L. Mamo

Copyright © 2012 Gideon Charach et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. S. Lin and W. E. Connor, “The long term effects of dietary cholesterol upon the plasma lipids, lipoproteins, cholesterol absorption, and the sterol balance in man: the demonstration of feedback inhibition of cholesterol biosynthesis and increased bile acid excretion,” Journal of Lipid Research, vol. 21, no. 8, pp. 1042–1052, 1980. View at Google Scholar · View at Scopus
  2. B. G. Bhat, S. R. Rapp, J. A. Beaudry et al., “Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435,” Journal of Lipid Research, vol. 44, no. 9, pp. 1614–1621, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. G. Charach, I. Grosskopf, A. Rabinovich, M. Shochat, M. Weintraub, and P. Rabinovich, “The association of bile acid excretion and atherosclerotic coronary artery disease,” Therapeutic Advances in Gastroenterology, vol. 4, no. 2, pp. 95–101, 2011. View at Publisher · View at Google Scholar · View at PubMed
  4. N. N. Izzat, M. E. Deshazer, and D. S. Loose-Mitchell, “New molecular targets for cholesterol-lowering therapy,” Journal of Pharmacology and Experimental Therapeutics, vol. 293, no. 2, pp. 315–320, 2000. View at Google Scholar · View at Scopus
  5. A. K. Batta, G. Salen, K. R. Rapole et al., “Highly simplified method for gas-liquid chromatographic quantitation of bile acids and sterols in human stool,” Journal of Lipid Research, vol. 40, no. 6, pp. 1148–1154, 1999. View at Google Scholar · View at Scopus
  6. R. A. Rajaratnam, H. Gylling, and T. A. Miettinen, “Serum squalene in postmenopausal women without and with coronary artery disease,” Atherosclerosis, vol. 146, no. 1, pp. 61–64, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Rajaratnam, H. Gylling, and T. A. Miettinen, “Independent association of serum squalene and noncholesterol sterols with coronary artery disease in postmenopausal women,” Journal of the American College of Cardiology, vol. 35, no. 5, pp. 1185–1191, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. C. J. Glueck, J. Speirs, T. Tracy, P. Streicher, E. Illig, and J. Vandegrift, “Relationships of serum plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hyperphytosterolemic probands and their first-degree relatives,” Metabolism, vol. 40, no. 8, pp. 842–848, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Sudhop, B. M. Gottwald, and K. Von Bergmann, “Serum plant sterols as a potential risk factor for coronary heart disease,” Metabolism, vol. 51, no. 12, pp. 1519–1521, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. G. Assmann, P. Cullen, J. Erbey, D. R. Ramey, F. Kannenberg, and H. Schulte, “Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: results of a nested case—control analysis of the Prospective Cardiovascular Munster (PROCAM) study,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 16, no. 1, pp. 13–21, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. S. M. Post, R. de Crom, R. van Haperen, A. Van Tol, and H. M. G. Princen, “Increased fecal bile acid excretion in transgenic mice with elevated expression of human phospholipid transfer protein,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 5, pp. 892–897, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. C. Lutton, “Cholesterol and bile acid dynamics: comparative aspects,” Reproduction Nutrition Development, vol. 30, no. 2, pp. 145–160, 1990. View at Google Scholar · View at Scopus
  13. H. Li, G. Xu, Q. Shang et al., “Inhibition of ileal bile acid transport lowers plasma cholesterol levels by inactivating hepatic farnesoid X receptor and stimulating cholesterol 7α-hydroxylase,” Metabolism, vol. 53, no. 7, pp. 927–932, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. H. B. Lofland, T. B. Clarkson, R. W. St Clair, and N. D. M. Lehner, “Studies on the regulation of plasma cholesterol levels in squirrel monkeys of two genotypes,” Journal of Lipid Research, vol. 13, no. 1, pp. 39–47, 1972. View at Google Scholar · View at Scopus
  15. G. Charach, P. D. Rabinovich, F. M. Konikoff, I. Grosskopf, M. S. Weintraub, and T. Gilat, “Decreased fecal bile acid output in patients with coronary atherosclerosis,” Journal of Medicine, vol. 29, no. 3-4, pp. 125–136, 1998. View at Google Scholar · View at Scopus
  16. H. Gylling, M. Hallikainen, R. A. Rajaratnam, P. Simonen, J. Pihlajamäki, and M. Laakso, “The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease,” Metabolism, vol. 58, no. 3, pp. 401–407, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. A. Rajaratnam, H. Gylling, and T. A. Miettinen, “Cholesterol absorption, synthesis, and fecal output in postmenopausal women with and without coronary artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 10, pp. 1650–1655, 2001. View at Google Scholar
  18. S. M. Grundy, E. H. Ahrens, and T. A. Miettinen, “Quantitative isolation and gas liquid chromatographic analysis of total bile acids,” Journal of Lipid Research, vol. 6, pp. 397–410, 1965. View at Google Scholar · View at Scopus
  19. H. Simonen and T. A. Miettinen, “Coronary artery disease and bile acid synthesis in familial hypercholesterolemia,” Atherosclerosis, vol. 63, no. 2-3, pp. 159–166, 1987. View at Google Scholar · View at Scopus
  20. B. Angelin and L. A. Carlson, “Bile acids and plasma high density lipoproteins: biliary lipid metabolism in fish eye disease,” European Journal of Clinical Investigation, vol. 16, no. 2, pp. 157–162, 1986. View at Google Scholar · View at Scopus
  21. Y. Yamori, S. Murakami, K. Ikeda, and Y. Nara, “Fish and lifestyle-related disease prevention: experimental and epidemiological evidence for anti-atherogenic potential of taurine,” Clinical and Experimental Pharmacology & Physiology, vol. 31, supplement 2, pp. S20–S23, 2004. View at Google Scholar
  22. S. Morozova, I. Suc-Royer, and J. Auwerx, “Cholesterol metabolism modulators in future drug therapy for atherosclerosis,” Medecine/Sciences, vol. 21, pp. 53–58, 2005. View at Google Scholar · View at Scopus
  23. J. A. Poorman, R. A. Buck, S. A. Smith, M. L. Overturf, and D. S. Loose-Mitchell, “Bile acid excretion and cholesterol 7α-hydroxylase expression in hypercholesterolemia-resistant rabbits,” Journal of Lipid Research, vol. 34, no. 10, pp. 1675–1685, 1993. View at Google Scholar · View at Scopus
  24. H. M. G. Princen, S. M. Post, and J. Twisk, “Regulation of bile acid biosynthesis,” Current Pharmaceutical Design, vol. 3, no. 1, pp. 59–84, 1997. View at Google Scholar · View at Scopus