Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2012, Article ID 964697, 8 pages
http://dx.doi.org/10.1155/2012/964697
Research Article

Effects of the Intensity of Leg Isometric Training on the Vasculature of Trained and Untrained Limbs and Resting Blood Pressure in Middle-Aged Men

1Sport and Exercise Science, University of Northampton, Park Campus, Boughton Green Road, Northampton NN2 7AL, UK
2Sport and Exercise Science, Canterbury Christ Church University, Canterbury, Kent CT1 1QU, UK

Received 22 May 2012; Revised 20 July 2012; Accepted 26 July 2012

Academic Editor: Cheri McGowan

Copyright © 2012 Anthony W. Baross et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Wiley, C. L. Dunn, R. H. Cox, N. A. Hueppchen, and M. S. Scott, “Isometric exercise training lowers resting blood pressure,” Medicine and Science in Sports and Exercise, vol. 24, no. 7, pp. 749–754, 1992. View at Google Scholar · View at Scopus
  2. A. C. Taylor, N. McCartney, M. V. Kamath, and R. L. Wiley, “Isometric training lowers resting blood pressure and modulates autonomic control,” Medicine and Science in Sports and Exercise, vol. 35, no. 2, pp. 251–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. L. McGowan, A. S. Levy, N. McCartney, and M. J. MacDonald, “Isometric handgrip training does not improve flow-mediated dilation in subjects with normal blood pressure,” Clinical Science, vol. 112, no. 7-8, pp. 403–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. D. Wiles, D. A. Coleman, and I. L. Swaine, “The effects of performing isometric training at two exercise intensities in healthy young males,” European Journal of Applied Physiology, vol. 108, no. 3, pp. 419–428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. L. McGowan, A. S. Levy, P. J. Millar et al., “Acute vascular responses to isometric handgrip exercise and effects of training in persons medicated for hypertension,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 291, no. 4, pp. H1797–H1802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. J. Millar, S. R. Bray, C. L. McGowan, M. J. MacDonald, and N. McCartney, “Effects of isometric handgrip training among people medicated for hypertension: a multilevel analysis,” Blood Pressure Monitoring, vol. 12, no. 5, pp. 307–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. R. Devereux, J. D. Wiles, and I. L. Swaine, “Reductions in resting blood pressure after 4 weeks of isometric exercise training,” European Journal of Applied Physiology, vol. 109, no. 4, pp. 601–606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Halbert, C. A. Silagy, P. Finucane, R. T. Withers, P. A. Hamdorf, and G. R. Andrews, “The effectiveness of exercise training in lowering blood pressure: a meta-analysis of randomised controlled trials of 4 weeks or longer,” Journal of Human Hypertension, vol. 11, no. 10, pp. 641–649, 1997. View at Google Scholar · View at Scopus
  9. R. H. Fagard, “Exercise characteristics and the blood pressure response to dynamic physical training,” Medicine and Science in Sports and Exercise, vol. 33, no. 6, supplement, pp. S484–S492, 2001. View at Google Scholar · View at Scopus
  10. P. Clarkson, H. E. Montgomery, M. J. Mullen et al., “Exercise training enhances endothelial function in young men,” Journal of the American College of Cardiology, vol. 33, no. 5, pp. 1379–1385, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. B. M. Prior, P. G. Lloyd, H. T. Yang, and R. L. Terjung, “Exercise-induced vascular remodeling,” Exercise and Sport Sciences Reviews, vol. 31, no. 1, pp. 26–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. L. S. Pescatello, B. A. Franklin, R. Fagard, W. B. Farquhar, G. A. Kelley, and C. A. Ray, “American College of Sports Medicine position stand. Exercise and hypertension,” Medicine and Science in Sports and Exercise, vol. 36, no. 3, pp. 533–553, 2004. View at Google Scholar · View at Scopus
  13. T. M. Tinken, D. H. J. Thijssen, M. A. Black, N. T. Cable, and D. J. Green, “Time course of change in vasodilator function and capacity in response to exercise training in humans,” The Journal of Physiology, vol. 586, no. 20, pp. 5003–5012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. D. J. Green, A. Maiorana, G. O'Driscoll, and R. Taylor, “Effect of exercise training on endothelium-derived nitric oxide function in humans,” The Journal of Physiology, vol. 561, no. 1, pp. 1–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. Brown, “Exercise and coronary vascular remodelling in the healthy heart,” Experimental Physiology, vol. 88, no. 5, pp. 645–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. C. A. Ray and K. M. Hume, “Sympathetic neural adaptations to exercise training in humans: insights from microneurography,” Medicine and Science in Sports and Exercise, vol. 30, no. 3, pp. 387–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. J. R. Cram, G. S. Kasman, and J. Holtz, Introduction to Surface Electromyography, Aspen Publishers, Gaithersburg, Md, USA, 1998.
  18. R. Kiyooka, T. Yokoyama, K. Sato, K. Yamashita, and M. Manabe, “Blood pressure monitored by vasotrac correlates to that by the oscillometric arm cuff method: A-148,” European Journal of Anaesthesiology, vol. 23, supplement 37, pp. 38–39, 2006. View at Google Scholar
  19. J. K. Shoemaker, Z. I. Pozeg, and R. L. Hughson, “Forearm blood flow by Doppler ultrasound during rest and exercise: tests of day-to-day repeatability,” Medicine and Science in Sports and Exercise, vol. 28, no. 9, pp. 1144–1149, 1996. View at Google Scholar · View at Scopus
  20. J. K. Shoemaker, J. R. Halliwill, R. L. Hughson, and M. J. Joyner, “Contributions of acetylcholine and nitric oxide to forearm blood flow at exercise onset and recovery,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 273, no. 5, pp. H2388–H2395, 1997. View at Google Scholar · View at Scopus
  21. G. R. Devereux, J. D. Wiles, and I. Swaine, “Markers of isometric training intensity and reductions in resting blood pressure,” Journal of Sports Sciences, vol. 29, no. 7, pp. 715–724, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Field, Discovering Statistics: Using SPSS for Windows, Sage, London, UK, 2000.
  23. J. H. Mitchell, B. Schibye, F. C. Payne, and B. Saltin, “Response of arterial blood pressure to static exercise in relation to muscle mass, force development, and electromyographic activity,” Circulation Research, vol. 48, no. 6, pp. I-70–I-75, 1981. View at Google Scholar · View at Scopus
  24. D. R. Seals, “Influence of force on muscle and skin sympathetic nerve activity during sustained isometric contractions in humans,” The Journal of Physiology, vol. 462, pp. 147–159, 1993. View at Google Scholar · View at Scopus
  25. L. B. Rowell, Human Cardiovascular Control, Oxford University Press, Oxford, UK, 1993.
  26. P. W. Humpherys and A. R. Lind, “The blood flow through active and inactive muscles of the forearm during sustained hand-grip contractions,” The Journal of Physiology, vol. 166, pp. 120–135, 1963. View at Google Scholar · View at Scopus
  27. J. P. Fisher and M. J. White, “Muscle afferent contributions to the cardiovascular response to isometric exercise,” Experimental Physiology, vol. 89, no. 6, pp. 639–646, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Donato, L. A. Lesniewski, and M. D. Delp, “Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles,” The Journal of Physiology, vol. 579, no. 1, pp. 115–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. M. Anton, M. Y. Cortez-Cooper, A. E. DeVan, D. B. Neidre, J. N. Cook, and H. Tanaka, “Resistance training increases basal limb blood flow and vascular conductance in aging humans,” Journal of Applied Physiology, vol. 101, no. 5, pp. 1351–1355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Walther, S. Nottin, L. Karpoff, A. Pérez-Martin, M. Dauzat, and P. Obert, “Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: comparison of the upper and lower limb vasculature,” Acta Physiologica, vol. 193, no. 2, pp. 139–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. W. J. Fisher and M. J. White, “Training-induced adaptations in the central command and peripheral reflex components of the pressor response to isometric exercise of the human triceps surae,” The Journal of Physiology, vol. 520, no. 2, pp. 621–628, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. D. G. Sale, “Influence of exercise and training on motor unit activation,” Exercise and Sport Sciences Reviews, vol. 15, pp. 95–151, 1987. View at Google Scholar · View at Scopus
  33. C. A. Carrington, W. Fisher, and M. J. White, “The effects of athletic training and muscle contractile character on the pressor response to isometric exercise of the human triceps surae,” European Journal of Applied Physiology and Occupational Physiology, vol. 80, no. 4, pp. 337–343, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Ray and D. I. Carrasco, “Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 279, no. 1, pp. H245–H249, 2000. View at Google Scholar · View at Scopus
  35. P. J. Millar, M. J. MacDonald, S. R. Bray, and N. McCartney, “Isometric handgrip exercise improves acute neurocardiac regulation,” European Journal of Applied Physiology, vol. 107, no. 5, pp. 509–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. L. McGowan, A. Visocchi, M. Faulkner et al., “Isometric handgrip training improves local flow-mediated dilation in medicated hypertensives,” European Journal of Applied Physiology, vol. 98, no. 4, pp. 355–362, 2006. View at Publisher · View at Google Scholar
  37. P. J. Millar, S. R. Bray, M. J. MacDonald, and N. McCartney, “The hypotensive effects of isometric handgrip training using an inexpensive spring handgrip training device,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 28, no. 3, pp. 203–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Perini, N. Fisher, A. Veicsteinas, and D. R. Pendergast, “Aerobic training and cardiovascular responses at rest and during exercise in older men and women,” Medicine and Science in Sports and Exercise, vol. 34, no. 4, pp. 700–708, 2002. View at Google Scholar · View at Scopus
  39. A. U. Ferrari, A. Radaelli, and M. Centola, “Aging and the cardiovascular system,” Journal of Applied Physiology, vol. 95, no. 6, pp. 2591–2597, 2003. View at Google Scholar · View at Scopus
  40. A. A. Vandervoort, “Aging of the human neuromuscular system,” Muscle and Nerve, vol. 25, no. 1, pp. 17–25, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. P. E. Gates and D. R. Seals, “Decline in large elastic artery compliance with age: a therapeutic target for habitual exercise,” British Journal of Sports Medicine, vol. 40, no. 11, pp. 897–899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. B. T. Roseguini, C. N. Alves, G. R. Chiappa, R. Stein, and J. P. Ribeiro, “Muscle metaboreflex contribution to resting limb haemodynamic control is preserved in older subjects,” Clinical Physiology and Functional Imaging, vol. 27, no. 5, pp. 335–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. E. R. Buskirk and J. L. Hodgson, “Age and aerobic power: the rate of change in men and women,” Federation Proceedings, vol. 46, no. 5, pp. 1824–1829, 1987. View at Google Scholar · View at Scopus