Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2013, Article ID 267215, 7 pages
http://dx.doi.org/10.1155/2013/267215
Review Article

Aortic Disease in the Young: Genetic Aneurysm Syndromes, Connective Tissue Disorders, and Familial Aortic Aneurysms and Dissections

Instituto de Cirurgia Vascular e Endovascular (ICVE), São Paulo, SP, Brazil

Received 23 July 2012; Revised 13 December 2012; Accepted 18 December 2012

Academic Editor: Erich Minar

Copyright © 2013 Marcelo Cury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. S. Moore, “The role of endovascular grafting technique in the treatment of infrarenal abdominal aortic aneurysm,” Cardiovascular Surgery, vol. 3, no. 2, pp. 109–114, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. A. V. Sterpetti, W. J. Hunter, and R. D. Schultz, “Congenital abdominal aortic aneurysms in the young. Case report and review of the literature,” Journal of Vascular Surgery, vol. 7, no. 6, pp. 763–769, 1988. View at Publisher · View at Google Scholar · View at Scopus
  3. P. P. Majumder, P. L. S. Jean, R. E. Ferrell, M. W. Webster, and D. L. Steed, “On the inheritance of abdominal aortic aneurysm,” American Journal of Human Genetics, vol. 48, no. 1, pp. 164–170, 1991. View at Google Scholar · View at Scopus
  4. R. M. Sandford, M. J. Bown, N. J. London, and R. D. Sayers, “The genetic basis of abdominal aortic aneurysms: a review,” European Journal of Vascular and Endovascular Surgery, vol. 33, no. 4, pp. 381–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. W. Webster, P. L. S. Jean, D. L. Steed, R. E. Ferrell, and P. P. Majumder, “Abdominal aortic aneurysm: results of a family study,” Journal of Vascular Surgery, vol. 13, no. 3, pp. 366–372, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. K. K. Singh, K. Rommel, A. Mishra et al., “TGFBR1 and TGFBR2 mutations in patients with features of Marfan syndrome and Loeys-Dietz syndrome,” Human Mutation, vol. 27, no. 8, pp. 770–777, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Porciani, M. Attanasio, V. Lepri et al., “Prevalence of cardiovascularmanifestations in Marfan syndrome,” Italian Heart Journal, vol. 5, no. 8, pp. 647–652, 2004. View at Google Scholar
  8. A. De Paepe, R. B. Devereux, H. C. Dietz, R. C. Hennekam, and R. E. Pyeritz, “Revised diagnostic criteria for the Marfan syndrome,” American Journal of Medical Genetics, vol. 62, no. 4, pp. 417–426, 1996. View at Google Scholar
  9. C. Boileau, D. C. Guo, N. Hanna, E. S. Regalado, D. Detaint, L. Gong et al., “TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome,” Nature Genetics, vol. 44, no. 8, pp. 916–921. View at Publisher · View at Google Scholar
  10. P. Beighton, A. De Paepe, B. Steinmann, P. Tsipouras, and R. J. Wenstrup, “Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK),” Journal of Medical Genetics, vol. 77, no. 1, pp. 31–37, 1998. View at Google Scholar
  11. E. J. Lawrence, “The clinical presentation of Ehlers-Danlos syndrome,” Advances in Neonatal Care, vol. 5, no. 6, pp. 301–314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. E. Whitelaw, “Ehlers-Danlos Syndrome, classical type: case management,” Pediatric Nursing, vol. 29, no. 6, pp. 423–426, 2003. View at Google Scholar · View at Scopus
  13. “What is Ehlers-Danlos syndrome? Ehlers-Danlos National Foundation website,” 2008, http://www.ednf.org/.
  14. “Genetics home reference: Ehlers-Danlos syndrome. National Library of Medicine,” 2008, http://www.ghr.mlm.nih.gov/.
  15. D. P. Germain and Y. Herrera-Guzman, “Vascular Ehlers-Danlos syndrome,” Annales de Genetique, vol. 47, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. J. Wenstrup, R. A. Meyer, J. S. Lyle et al., “Prevalence of aortic root dilation in the Ehlers-Danlos syndrome,” Genetics in Medicine, vol. 4, no. 3, pp. 112–117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Schwarze, W. I. Schievink, E. Petty et al., “Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV,” American Journal of Human Genetics, vol. 69, no. 5, pp. 989–1001, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. V. Persikov, R. J. Pillitteri, P. Amin, U. Schwarze, P. H. Byers, and B. Brodsky, “Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders,” Human Mutation, vol. 24, no. 4, pp. 330–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Pepin, U. Schwarze, A. Superti-Furga, and P. H. Byers, “Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type,” New England Journal of Medicine, vol. 342, no. 10, pp. 673–680, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Kurata, H. Oka, T. Ohmomo et al., “Successful stent placement for cervical artery dissection associated with the Ehlers-Danlos syndrome: case report and review of the literature,” Journal of Neurosurgery, vol. 99, no. 6, pp. 1077–1081, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Sugawara, K. Ban, K. Imai et al., “Successful coil embolization for spontaneous arterial rupture in association with Ehlers-Danlos syndrome type IV: report of a case,” Surgery Today, vol. 34, no. 1, pp. 94–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. B. L. Loeys, J. Chen, E. R. Neptune et al., “A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2,” Nature Genetics, vol. 37, no. 3, pp. 275–281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. B. L. Loeys, U. Schwarze, T. Holm et al., “Aneurysm syndromes caused by mutations in the TGF-β receptor,” The New England Journal of Medicine, vol. 355, no. 8, pp. 788–798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Williams, B. L. Loeys, L. U. Nwakanma et al., “Early surgical experience with Loeys-Dietz: a new syndrome of aggressive thoracic aortic aneurysm disease,” Annals of Thoracic Surgery, vol. 83, no. 2, pp. S757–S763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Coady, R. R. Davies, M. Roberts et al., “Familial patterns of thoracic aortic aneurysms,” Archives of Surgery, vol. 134, no. 4, pp. 361–367, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Bart, B. L. Loeys, and C. H. Dietz, “Loeys-Dietz syndrome. Gene reviews,” 2008, http://www.ncbi.nlm.nih.gov/books/NBK1133.
  27. D. Guo, S. Hasham, S. Q. Kuang et al., “Familial thoracic aortic aneurysms and dissections genetic: heterogeneity with a major locus mapping to 5q13-14,” Circulation, vol. 103, no. 20, pp. 2461–2468, 2001. View at Google Scholar · View at Scopus
  28. C. J. Vaughan, M. Casey, J. He et al., “Identification of a chromosome 11q23.2-q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder,” Circulation, vol. 103, no. 20, pp. 2469–2475, 2001. View at Google Scholar · View at Scopus
  29. H. Pannu, N. Avidan, V. Tran-Fadulu, and D. M. Milewicz, “Genetic basis of thoracic aortic aneurysms and dissections: potential relevance to abdominal aortic aneurysms,” Annals of the New York Academy of Sciences, vol. 1085, pp. 242–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Zhu, R. Vranckx, P. K. Van Kien et al., “Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus,” Nature Genetics, vol. 38, no. 3, pp. 343–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. D. C. Guo, H. Pannu, V. Tran-Fadulu, C. L. Papke, R. K. Yu, N. Avidan et al., “Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections,” Nature Genetics, vol. 39, no. 12, pp. 1488–1493, 2007. View at Publisher · View at Google Scholar
  32. J. M. Alegret, I. Duran, O. Palazón et al., “Prevalence of and predictors of bicuspid aortic valves in patients with dilated aortic roots,” American Journal of Cardiology, vol. 91, no. 5, pp. 619–622, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Cecconi, S. Nistri, A. Quarti et al., “Aortic dilatation in patients with bicuspid aortic valve,” Journal of Cardiovascular Medicine, vol. 7, no. 1, pp. 11–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Della, C. Bancone, C. Quarto et al., “Predictors of ascending aortic dilatation with bicuspid aortic valve: a wide spectrum of disease expression,” European Journal of Cardio-thoracic Surgery, vol. 31, no. 3, pp. 397–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. G. Gleason, “Heritable disorders predisposing to aortic dissection,” Seminars in Thoracic and Cardiovascular Surgery, vol. 17, no. 3, pp. 274–281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Niwa, J. K. Perloff, S. M. Bhuta et al., “Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses,” Circulation, vol. 103, no. 3, pp. 393–400, 2001. View at Google Scholar · View at Scopus
  37. M. Bauer, M. Pasic, R. Meyer et al., “Morphometric analysis of aortic media in patients with bicuspid and tricuspid aortic valve,” Annals of Thoracic Surgery, vol. 74, no. 1, pp. 58–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. L. J. Martin, V. Ramachandran, L. H. Cripe et al., “Evidence in favor of linkage to human chromosomal regions 18q, 5q and 13q for bicuspid aortic valve and associated cardiovascular malformations,” Human Genetics, vol. 121, no. 2, pp. 275–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Hateboer, M. A. V. Dijk, N. Bogdanova et al., “Comparison of phonotypes of polycystic kidney disease types 1 and 2,” The Lancet, vol. 353, no. 9147, pp. 103–107, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. E. A. Romão, M. Moysés Neto, S. R. Teixeira, V. F. Muglia, O. M. Vieira-Neto, and M. Dantas, “Renal and extrarenal manifestations of autosomal dominant polycystic kidney disease,” Brazilian Journal of Medical and Biological Research, vol. 39, no. 4, pp. 533–538, 2006. View at Google Scholar · View at Scopus
  41. E. Tahvanainen, P. Tahvanainen, H. Kääriäinen, and K. Höckerstedt, “Polycystic liver and kidney diseases,” Annals of Medicine, vol. 37, no. 8, pp. 546–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. C. Lee, W. T. Chang, C. C. Fang, I. L. Tsai, and W. J. Chen, “Sudden death caused by dissecting thoracic aortic aneurysm in a patient with autosomal dominant polycystic kidney disease,” Resuscitation, vol. 63, no. 1, pp. 93–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. C. W. Biermann and G. Rutishauser, “Polycystic kidneys associated with Marfan syndrome in an adult,” Scandinavian Journal of Urology and Nephrology, vol. 28, no. 3, pp. 295–296, 1994. View at Google Scholar
  44. R. Vanmaele, M. Witbreuk, M. De Broe, P. Van Schil, and R. Lins, “Abdominal aortic aneurysm and polycystic kidneys [12],” Nephron, vol. 69, no. 1, pp. 107–108, 1995. View at Google Scholar · View at Scopus
  45. D. Bichet, D. Peters, A. J. Patel, P. Delmas, and E. Honoré, “Cardiovascular polycystins: insights from autosomal dominant polycystic kidney disease and transgenic animal models,” Trends in Cardiovascular Medicine, vol. 16, no. 8, pp. 292–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. V. E. Torres, Y. Cai, X. Chen et al., “Vascular expression of polycystin-2,” Journal of the American Society of Nephrology, vol. 12, no. 1, pp. 1–9, 2001. View at Google Scholar · View at Scopus
  47. L. A. Matura, V. B. Ho, D. R. Rosing, and C. A. Bondy, “Aortic dilatation and dissection in Turner syndrome,” Circulation, vol. 116, no. 15, pp. 1663–1670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. V. B. Ho, V. K. Bakalov, M. Cooley et al., “Major vascular anomalies in Turner syndrome: prevalence and magnetic resonance angiographic features,” Circulation, vol. 110, no. 12, pp. 1694–1700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Seymour-Dempsey and R. J. Andrassy, “Neurofibromatosis: implications for the general surgeon,” Journal of the American College of Surgeons, vol. 195, no. 4, pp. 553–563, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. D. H. Gutmann, A. Aylsworth, J. C. Carey et al., “The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2,” Journal of the American Medical Association, vol. 278, no. 1, pp. 51–57, 1997. View at Google Scholar · View at Scopus
  51. Y. P. Cho, G. H. Kang, S. J. Choi, H. Herr, M. S. Han, H. J. Jang et al., “Aneurysm of the popliteal artery in neurofibromatosis,” Annals of Vascular Surgery, vol. 19, no. 536, pp. 900–903, 2005. View at Google Scholar
  52. J. L. Huffman, V. Gahtan, V. D. Bowers, and J. L. Mills, “Neurofibromatosis and arterial aneurysms,” American Surgeon, vol. 62, no. 4, pp. 311–314, 1996. View at Google Scholar · View at Scopus
  53. S. Saitoh and S. Matsuda, “Aneurysm of the major vessels in neurofibromatosis,” Archives of Orthopaedic and Trauma Surgery, vol. 117, no. 1-2, pp. 110–113, 1998. View at Publisher · View at Google Scholar · View at Scopus