Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2013 (2013), Article ID 629378, 13 pages
http://dx.doi.org/10.1155/2013/629378
Review Article

Transcranial Doppler Ultrasound: A Review of the Physical Principles and Major Applications in Critical Care

1University Hospital South Manchester, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
2Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK
3Royal Oldham Hospital, Rochdale Road, Manchester OL1 2JH, UK

Received 7 August 2013; Accepted 10 November 2013

Academic Editor: Aaron S. Dumont

Copyright © 2013 Jawad Naqvi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Aaslid, T. M. Markwalder, and H. Nornes, “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries,” Journal of Neurosurgery, vol. 57, no. 6, pp. 769–774, 1982. View at Google Scholar · View at Scopus
  2. I. K. Moppett and R. P. Mahajan, “Transcranial Doppler ultrasonography in anaesthesia and intensive care,” British Journal of Anaesthesia, vol. 93, no. 5, pp. 710–724, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. H. A. Nicoletto and M. H. Burkman, “Transcranial Doppler series part II: performing a transcranial Doppler,” American Journal of Electroneurodiagnostic Technology, vol. 49, no. 1, pp. 14–27, 2009. View at Google Scholar · View at Scopus
  4. G. Tsivgoulis, A. V. Alexandrov, and M. A. Sloan, “Advances in transcranial Doppler ultrasonography,” Current Neurology and Neuroscience Reports, vol. 9, no. 1, pp. 46–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Topcuoglu, “Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects,” Journal of Neurochemistry, vol. 123, supplement 2, pp. 39–51, 2012. View at Publisher · View at Google Scholar
  6. E. C. Jauch, J. L. Saver, H. P. Adams et al., “Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association,” Stroke, vol. 44, pp. 870–947, 2013. View at Publisher · View at Google Scholar
  7. M. Marinoni, A. Ginanneschi, P. Forleo, and L. Amaducci, “Technical limits in transcranial Doppler recording: inadequate acoustic windows,” Ultrasound in Medicine and Biology, vol. 23, no. 8, pp. 1275–1277, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. R. J. Adams, “TCD in sickle cell disease: an important and useful test,” Pediatric Radiology, vol. 35, no. 3, pp. 229–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Rigamonti, A. Ackery, and A. J. Baker, “Transcranial Doppler monitoring in subarachnoid hemorrhage: a critical tool in critical care,” Canadian Journal of Anesthesia, vol. 55, no. 2, pp. 112–123, 2008. View at Google Scholar · View at Scopus
  10. J. F. Arenillas, C. A. Molina, J. Montaner, S. Abilleira, M. A. González-Sánchez, and J. Álvarez-Sabín, “Progression and clinical recurrence of symptomatic middle cerebral artery stenosis: a long-term follow-up transcranial Doppler ultrasound study,” Stroke, vol. 32, no. 12, pp. 2898–2904, 2001. View at Google Scholar · View at Scopus
  11. I. Christou, R. A. Felberg, A. M. Demchuk et al., “A broad diagnostic battery for bedside transcranial Doppler to detect flow changes with internal carotid artery stenosis or occlusion,” Journal of Neuroimaging, vol. 11, no. 3, pp. 236–242, 2001. View at Google Scholar · View at Scopus
  12. X. Ducrocq, M. Braun, M. Debouverie, C. Junges, M. Hummer, and H. Vespignani, “Brain death and transcranial Doppler: experience in 130 cases of brain dead patients,” Journal of the Neurological Sciences, vol. 160, no. 1, pp. 41–46, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Moreno, E. Mesalles, J. Gener et al., “Evaluating the outcome of severe head injury with transcranial Doppler ultrasonography,” Neurosurgical Focus, vol. 8, no. 1, pp. 1–7, 2000. View at Google Scholar · View at Scopus
  14. C. W. A. Pennekamp, F. L. Moll, and G. J. de Borst, “The potential benefits and the role of cerebral monitoring in carotid endarterectomy,” Current Opinion in Anaesthesiology, vol. 24, no. 6, pp. 693–697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Müller, M. Voges, U. Piepgras, and K. Schimrigk, “Assessment of cerebral vasomotor reactivity by transcranial Doppler ultrasound and breath-holding: a comparison with acetazolamide as vasodilatory stimulus,” Stroke, vol. 26, no. 1, pp. 96–100, 1995. View at Google Scholar · View at Scopus
  16. E. B. Ringelstein, D. W. Droste, V. L. Babikian et al., “Consensus on microembolus detection by TCD: international consensus group on microembolus detection,” Stroke, vol. 29, no. 3, pp. 725–729, 1998. View at Google Scholar · View at Scopus
  17. R. B. Panerai, “Assessment of cerebral pressure autoregulation in humans—a review of measurement methods,” Physiological Measurement, vol. 19, no. 3, pp. 305–338, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. H. White and B. Venkatesh, “Applications of transcranial Doppler in the ICU: a review,” Intensive Care Medicine, vol. 32, no. 7, pp. 981–994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Monteiro, C. W. Bollen, A. C. van Huffelen, R. G. A. Ackerstaff, N. J. G. Jansen, and A. J. van Vught, “Transcranial Doppler ultrasonography to confirm brain death: a meta-analysis,” Intensive Care Medicine, vol. 32, no. 12, pp. 1937–1944, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Schatlo and R. M. Pluta, “Clinical applications of transcranial Doppler sonography,” Reviews on Recent Clinical Trials, vol. 2, no. 1, pp. 49–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Saqqur, K. Uchino, A. M. Demchuk et al., “Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke,” Stroke, vol. 38, no. 3, pp. 948–954, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kaps, E. Stolz, and J. Allendoerfer, “Prognostic value of transcranial sonography in acute stroke patients,” European Neurology, vol. 59, supplement 1, pp. 9–16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. F. A. Rasulo, E. de Peri, and A. Lavinio, “Transcranial Doppler ultrasonography in intensive care,” European Journal of Anaesthesiology, vol. 25, no. 42, pp. 167–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. S. Kincaid, “Transcranial Doppler ultrasonography: a diagnostic tool of increasing utility,” Current Opinion in Anaesthesiology, vol. 21, no. 5, pp. 552–559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Aaslid, “The Doppler principle applied to measurement of blood flow velocity in cerebral arteries,” in Transcranial Doppler Sonography, R. A. Vienna, Ed., pp. 22–38, Springer, New York, NY, USA, 1986. View at Google Scholar
  26. H. A. Nicoletto and M. H. Burkman, “Transcranial Doppler series part III: interpretation,” American Journal of Electroneurodiagnostic Technology, vol. 49, no. 3, pp. 244–259, 2009. View at Google Scholar · View at Scopus
  27. R. G. Gosling and D. H. King, “Arterial assessment by Doppler shift ultrasound,” Proceedings of the Royal Society of Medicine, vol. 67, no. 6, part 1, pp. 447–449, 1974. View at Google Scholar · View at Scopus
  28. H. A. Nicoletto and M. H. Burkman, “Transcranial Doppler series part IV: case studies,” American Journal of Electroneurodiagnostic Technology, vol. 49, no. 4, pp. 342–360, 2009. View at Google Scholar · View at Scopus
  29. A.-M. Homburg, M. Jakobsen, and E. Enevoldsen, “Transcranial Doppler recordings in raised intracranial pressure,” Acta Neurologica Scandinavica, vol. 87, no. 6, pp. 488–493, 1993. View at Google Scholar · View at Scopus
  30. K. F. Lindegaard, H. Nornes, S. J. Bakke, W. Sorteberg, and P. Nakstad, “Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound,” Acta Neurochirurgica, vol. 42, pp. 81–84, 1988. View at Google Scholar · View at Scopus
  31. R. Aaslid, P. Huber, and H. Nornes, “Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound,” Journal of Neurosurgery, vol. 60, no. 1, pp. 37–41, 1984. View at Google Scholar · View at Scopus
  32. G. E. Sviri, B. Ghodke, G. W. Britz et al., “Transcranial Doppler grading criteria for basilar artery vasospasm,” Neurosurgery, vol. 59, no. 2, pp. 360–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. S. Markus and M. J. G. Harrison, “Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus,” Stroke, vol. 23, no. 5, pp. 668–673, 1992. View at Google Scholar · View at Scopus
  34. H. A. Nicoletto and L. S. Boland, “Transcranial Doppler series part V: specialty applications,” American Journal of Electroneurodiagnostic Technology, vol. 51, no. 1, pp. 31–41, 2011. View at Google Scholar · View at Scopus
  35. V. G. Dunne, M. Besser, and W. J. Ma, “Transcranial Doppler in carotid endarterectomy,” Journal of Clinical Neuroscience, vol. 8, no. 2, pp. 140–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. A. King and H. S. Markus, “Doppler embolic signals in cerebrovascular disease and prediction of stroke risk: a systematic review and meta-analysis,” Stroke, vol. 40, no. 12, pp. 3711–3717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Kobayashi, Y. Iguchi, K. Kimura et al., “Contrast transcranial Doppler can diagnose large patent foramen ovale,” Cerebrovascular Diseases, vol. 27, no. 3, pp. 230–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. P. Spencer, R. G. A. Ackerstaff, V. L. Babikian et al., “Basic identification criteria of Doppler microembolic signals,” Stroke, vol. 26, no. 6, article 1123, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Sloan, A. V. Alexandrov, C. H. Tegeler et al., “Assessment: transcranial Doppler ultrasonography. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology,” Neurology, vol. 62, no. 9, pp. 1468–1481, 2004. View at Google Scholar · View at Scopus
  40. V. Papaioannou, C. Dragoumanis, V. Theodorou, D. Konstantonis, I. Pneumatikos, and T. Birbilis, “Transcranial Doppler ultrasonography in intensive care unit. Report of a case with subarachnoid hemorrhage and brain death and review of the literature,” Greek E-Journal of Perioperative Medicine, vol. 6, pp. 95–104, 2008. View at Google Scholar
  41. M. A. Topcuoglu, J. Pryor, C. Ogilvy, and J. P. Kistler, “Cerebral vasospasm following subarachnoid hemorrhage,” Current Treatment Options in Cardiovascular Medicine, vol. 4, no. 5, pp. 373–384, 2002. View at Publisher · View at Google Scholar
  42. G.-M. Von Reutern, M.-W. Goertler, N. M. Bornstein et al., “Grading carotid stenosis using ultrasonic methods,” Stroke, vol. 43, no. 3, pp. 916–921, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. J. C. Navarro, A. Y. Lao, V. K. Sharma, G. Tsivgoulis, and A. V. Alexandrov, “The accuracy of transcranial Doppler in the diagnosis of middle cerebral artery stenosis,” Cerebrovascular Diseases, vol. 23, no. 5-6, pp. 325–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Feldmann, J. L. Wilterdink, A. Kosinski et al., “The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial,” Neurology, vol. 68, no. 24, pp. 2099–2106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Zhao, K. Barlinn, V. K. Sharma et al., “Velocity criteria for intracranial stenosis revisited: an international multicenter study of transcranial Doppler and digital subtraction angiography,” Stroke, vol. 42, no. 12, pp. 3429–3434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. E. Gaunt, P. J. Martin, J. L. Smith et al., “Clinical relevance of intraoperative embolization detected by transcranial Doppler ultrasonography during carotid endarterectomy: a prospective study of 100 patients,” British Journal of Surgery, vol. 81, no. 10, pp. 1435–1439, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. M. P. Spencer, “Transcranial Doppler monitoring and causes of stroke from carotid endarterectomy,” Stroke, vol. 28, no. 4, pp. 685–691, 1997. View at Google Scholar · View at Scopus
  48. R. G. A. Ackerstaff, K. G. M. Moons, C. J. W. Van de Vlasakker et al., “Association of intraoperative transcranial Doppler monitoring variables with stroke from carotid endarterectomy,” Stroke, vol. 31, no. 8, pp. 1817–1823, 2000. View at Google Scholar · View at Scopus
  49. P. Cao, G. Giordano, S. Zannetti et al., “Transcranial Doppler monitoring during carotid endarterectomy: is it appropriate for selecting patients in need of a shunt?” Journal of Vascular Surgery, vol. 26, no. 6, pp. 973–980, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. C. W. A. Pennekamp, S. C. Tromp, R. G. A. Ackerstaff et al., “Prediction of cerebral hyperperfusion after carotid endarterectomy with transcranial Doppler,” European Journal of Vascular and Endovascular Surgery, vol. 43, no. 4, pp. 371–376, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. J. E. Newman, M. Ali, R. Sharpe, M. J. Bown, R. D. Sayers, and A. R. Naylor, “Changes in middle cerebral artery velocity after carotid endarterectomy do not identify patients at high-risk of suffering intracranial haemorrhage or stroke due to hyperperfusion syndrome,” European Journal of Vascular & Endovascular Surgery, vol. 45, no. 6, pp. 562–571, 2013. View at Publisher · View at Google Scholar
  52. K. Fukui, M. Negoro, I. Takahashi, K. Fukasaku, K. Nakabayashi, and J. Yoshida, “Usefulness of intravascular Doppler flow measurements in cerebral endovascular treatment: a comparison with trans cranial Doppler,” Interventional Neuroradiology, vol. 2, no. 2, pp. 103–110, 1996. View at Google Scholar · View at Scopus
  53. R. F. Simm, P. H. P. de Aguiar, M. de Oliveira Lima, and B. L. Paiva, “Transcranial Doppler as a routine in the treatment of vasospasm following subarachanoid hemorrhage (SAH),” Acta Neurochirurgica, vol. 115, pp. 75–76, 2013. View at Google Scholar
  54. S.-H. Park and S.-K. Hwang, “Transcranial Doppler study of cerebral arteriovenous malformations after gamma knife radiosurgery,” Journal of Clinical Neuroscience, vol. 16, no. 3, pp. 378–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Harders and J. Gilsbach, “Transcranial Doppler sonography and its application in extracranial-intracranial bypass surgery,” Neurological Research, vol. 7, no. 3, pp. 129–141, 1985. View at Google Scholar · View at Scopus
  56. M. Skjelland, K. Krohg-Sørensen, B. Tennøe, S. J. Bakke, R. Brucher, and D. Russell, “Cerebral microemboli and brain injury during carotid artery endarterectomy and stenting,” Stroke, vol. 40, no. 1, pp. 230–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Dittrich and E. B. Ringelstein, “Occurrence and clinical impact of microembolic signals during or after cardiosurgical procedures,” Stroke, vol. 39, no. 2, pp. 503–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. D. D. Doblar, “Intraoperative transcranial ultrasonic monitoring for cardiac and vascular surgery,” Seminars in Cardiothoracic and Vascular Anesthesia, vol. 8, no. 2, pp. 127–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. O. S. Platt, “Prevention and management of stroke in sickle cell anemia,” Hematology, vol. 2006, no. 1, pp. 54–57, 2006. View at Google Scholar · View at Scopus
  60. R. J. Adams, V. C. McKie, E. M. Carl et al., “Long-term stroke risk in children with sickle cell disease screened with transcranial Doppler,” Annals of Neurology, vol. 42, no. 5, pp. 699–704, 1997. View at Publisher · View at Google Scholar · View at Scopus
  61. R. J. Adams, V. C. McKie, L. Hsu et al., “Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography,” The New England Journal of Medicine, vol. 339, no. 1, pp. 5–11, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Biller, J. C. Godersky, and H. P. Adams Jr., “Management of aneurysmal subarachnoid hemorrhage,” Stroke, vol. 19, no. 10, pp. 1300–1305, 1988. View at Google Scholar · View at Scopus
  63. H. H. Dietrich and R. G. Dacey Jr., “Molecular keys to the problems of cerebral vasospasm,” Neurosurgery, vol. 46, no. 3, pp. 517–530, 2000. View at Google Scholar · View at Scopus
  64. C. Lysakowski, B. Walder, M. C. Costanza, and M. R. Tramèr, “Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review,” Stroke, vol. 32, no. 10, pp. 2292–2298, 2001. View at Google Scholar · View at Scopus
  65. Y. Y. Vora, M. Suarez-Almazor, D. E. Steinke, M. L. Martin, and J. M. Findlay, “Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage,” Neurosurgery, vol. 44, no. 6, pp. 1237–1248, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. M. A. Sloan, C. M. Burch, M. A. Wozniak et al., “Transcranial Doppler detection of vertebrobasilar vasospasm following subarachnoid hemorrhage,” Stroke, vol. 25, no. 11, pp. 2187–2197, 1994. View at Google Scholar · View at Scopus
  67. J. F. Soustiel, V. Shik, R. Shreiber, Y. Tavor, and D. Goldsher, “Basilar vasospasm diagnosis: investigation of a modified “Lindegaard index” based on imaging studies and blood velocity measurements of the basilar artery,” Stroke, vol. 33, no. 1, pp. 72–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. M. A. Wozniak, M. A. Sloan, M. I. Rothman et al., “Detection of vasospasm by transcranial Doppler sonography: the challenges of the anterior and posterior cerebral arteries,” Journal of Neuroimaging, vol. 6, no. 2, pp. 87–93, 1996. View at Google Scholar · View at Scopus
  69. J. A. Frontera, A. Fernandez, J. M. Schmidt et al., “Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition?” Stroke, vol. 40, no. 6, pp. 1963–1968, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. S. Connolly, A. A. Rabinstein, J. R. Carhuapoma et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association,” Stroke, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Akopov and G. T. Whitman, “Hemodynamic studies in early ischemic stroke: serial transcranial Doppler and magnetic resonance angiography evaluation,” Stroke, vol. 33, no. 5, pp. 1274–1279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. A. M. Demchuk, I. Christou, T. H. Wein et al., “Accuracy and criteria for localizing arterial occlusion with transcranial Doppler,” Journal of Neuroimaging, vol. 10, no. 1, pp. 1–12, 2000. View at Google Scholar · View at Scopus
  73. A. M. Demchuk, W. Scott Burgin, I. Christou et al., “Thrombolysis in Brain Ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator,” Stroke, vol. 32, no. 1, pp. 89–93, 2001. View at Google Scholar · View at Scopus
  74. I. Christou, A. V. Alexandrov, W. S. Burgin et al., “Timing of recanalization after tissue plasminogen activator therapy determined by transcranial Doppler correlates with clinical recovery from ischemic stroke,” Stroke, vol. 31, no. 8, pp. 1812–1816, 2000. View at Google Scholar · View at Scopus
  75. A. V. Alexandrov, W. S. Burgin, A. M. Demchuk, A. El-Mitwalli, and J. C. Grotta, “Speed of intracranial clot lysis with intravenous tissue plasminogen activator therapy: sonographic classification and short-term improvement,” Circulation, vol. 103, no. 24, pp. 2897–2902, 2001. View at Google Scholar · View at Scopus
  76. A. V. Alexandrov and J. C. Grotta, “Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator,” Neurology, vol. 59, no. 6, pp. 862–867, 2002. View at Google Scholar · View at Scopus
  77. E. Stolz, F. Cioli, J. Allendoerfer, T. Gerriets, M. D. Sette, and M. Kaps, “Can early neurosonology predict outcome in acute stroke?: a metaanalysis of prognostic clinical effect sizes related to the vascular status,” Stroke, vol. 39, no. 12, pp. 3255–3261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Allendoerfer, M. Goertler, and G.-M. von Reutern, “Prognostic relevance of ultra-early Doppler sonography in acute ischaemic stroke: a prospective multicentre study,” The Lancet Neurology, vol. 5, no. 10, pp. 835–840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. A. V. Alexandrov, “Ultrasound identification and lysis of clots,” Stroke, vol. 35, no. 11, pp. 2722–2725, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Tsivgoulis, J. Eggers, M. Ribo et al., “Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies,” Stroke, vol. 41, no. 2, pp. 280–287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Bor-Seng-Shu, R. D. C. Nogueira, E. G. Figueiredo, E. F. Evaristo, A. B. Conforto, and M. J. Teixeira, “Sonothrombolysis for acute ischemic stroke: a systematic review of randomized controlled trials,” Neurosurgical Focus, vol. 32, no. 1, p. E5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Ricci, L. Dinia, M. del Sette et al., “Sonothrombolysis for acute ischaemic stroke,” Cochrane Database of Systematic Reviews, no. 6, Article ID CD008348, 2012. View at Publisher · View at Google Scholar
  83. K. Barlinn and A. V. Alexandrov, “Sonothrombolysis in ischemic stroke,” Current Treatment Options in Neurology, vol. 15, no. 2, pp. 91–103, 2013. View at Publisher · View at Google Scholar
  84. J. A. Llompart-Pou, J. M. Abadal, A. Güenther et al., “Transcranial sonography and cerebral circulatory arrest in adults: a comprehensive review,” ISRN Critical Care, vol. 2013, Article ID 167468, 6 pages, 2013. View at Publisher · View at Google Scholar
  85. J. Poularas, D. Karakitsos, G. Kouraklis et al., “Comparison between transcranial color Doppler ultrasonography and angiography in the confirmation of brain death,” Transplantation Proceedings, vol. 38, no. 5, pp. 1213–1217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. N. A. Martin, R. V. Patwardhan, M. J. Alexander et al., “Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm,” Journal of Neurosurgery, vol. 87, no. 1, pp. 9–19, 1997. View at Google Scholar · View at Scopus
  87. J. L. Jaggi, W. D. Obrist, T. A. Gennarelli, and T. W. Langfitt, “Relationship of early cerebral blood flow and metabolism to outcome in acute head injury,” Journal of Neurosurgery, vol. 72, no. 2, pp. 176–182, 1990. View at Google Scholar · View at Scopus
  88. H. van Santbrink, J. W. Schouten, E. W. Steyerberg, C. J. J. Avezaat, and A. I. R. Maas, “Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period,” Acta Neurochirurgica, vol. 144, no. 11, pp. 1141–1149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. J. F. Soustiel, V. Shik, and M. Feinsod, “Basilar vasospasm following spontaneous and traumatic subarachnoid haemorrhage: clinical implications,” Acta Neurochirurgica, vol. 144, no. 2, pp. 137–144, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. A. Zurynski, N. W. C. Dorsch, and M. R. Fearnside, “Incidence and effects of increased cerebral blood flow velocity after severe head injury: a transcranial Doppler ultrasound study II. Effect of vasospasm and hyperemia on outcome,” Journal of the Neurological Sciences, vol. 134, no. 1-2, pp. 41–46, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. W. Hassler, H. Steinmetz, and J. Gawlowski, “Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest,” Journal of Neurosurgery, vol. 68, no. 5, pp. 745–751, 1988. View at Google Scholar · View at Scopus
  92. J. Bellner, B. Romner, P. Reinstrup, K.-A. Kristiansson, E. Ryding, and L. Brandt, “Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP),” Surgical Neurology, vol. 62, no. 1, pp. 45–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Saqqur, D. Zygun, and A. Demchuk, “Role of transcranial Doppler in neurocritical care,” Critical Care Medicine, vol. 35, supplement 5, pp. S216–S223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Cabanes, J. L. Mas, A. Cohen et al., “Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age. A study using transesophageal echocardiography,” Stroke, vol. 24, no. 12, pp. 1865–1873, 1993. View at Publisher · View at Google Scholar
  95. S. Sarkar, S. Ghosh, S. K. Ghosh, and A. Collier, “Role of transcranial Doppler ultrasonography in stroke,” Postgraduate Medical Journal, vol. 83, no. 985, pp. 683–689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. E. K. Kerut, W. T. Norfleet, G. D. Plotnick, and T. D. Giles, “Patent foramen ovale: a review of associated conditions and the impact of physiological size,” Journal of the American College of Cardiology, vol. 38, no. 3, pp. 613–623, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Serena, T. Segura, M. J. Perez-Ayuso, J. Bassaganyas, A. Molins, and A. Dávalos, “The need to quantify right-to-left shunt in acute ischemic stroke a case-control study,” Stroke, vol. 29, no. 7, pp. 1322–1328, 1998. View at Google Scholar · View at Scopus
  98. D. W. Droste, J.-U. Knete, J. Stypmann et al., “Contrast transcranial Doppler ultrasound in the detection of right-to- left shunts: comparison of different procedures and different contrast agents,” Stroke, vol. 30, no. 9, pp. 1827–1832, 1999. View at Google Scholar · View at Scopus
  99. N. A. Lassen, “Cerebral blood flow and oxygen consumption in man,” Physiological Reviews, vol. 39, no. 2, pp. 183–238, 1959. View at Google Scholar · View at Scopus
  100. C. Puppo, L. López, E. Caragna, and A. Biestro, “One-minute dynamic cerebral autoregulation in severe head injury patients and its comparison with static autoregulation. A transcranial Doppler study,” Neurocritical Care, vol. 8, no. 3, pp. 344–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. M. J. H. Aries, J. W. Elting, J. de Keyser, B. P. H. Kremer, and P. C. A. J. Vroomen, “Cerebral autoregulation in stroke: a review of transcranial Doppler studies,” Stroke, vol. 41, no. 11, pp. 2697–2704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Reinhard, M. Roth, T. Müller, M. Czosnyka, J. Timmer, and A. Hetzel, “Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index,” Stroke, vol. 34, no. 9, pp. 2138–2144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. R. B. Panerai, “Transcranial Doppler for evaluation of cerebral autoregulation,” Clinical Autonomic Research, vol. 19, no. 4, pp. 197–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. O. B. Paulson, S. Strandgaard, and L. Edvinsson, “Cerebral autoregulation,” Cerebrovascular and Brain Metabolism Reviews, vol. 2, no. 2, pp. 161–192, 1990. View at Google Scholar · View at Scopus
  105. R. Aaslid, K.-F. Lindegaard, W. Sorteberg, and H. Nornes, “Cerebral autoregulation dynamics in humans,” Stroke, vol. 20, no. 1, pp. 45–52, 1989. View at Google Scholar · View at Scopus
  106. C. A. Giller, “A bedside test for cerebral autoregulation using transcranial Doppler ultrasound,” Acta Neurochirurgica, vol. 108, no. 1-2, pp. 7–14, 1991. View at Google Scholar · View at Scopus
  107. F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the valsalva maneuver,” Stroke, vol. 27, no. 7, pp. 1177–1182, 1996. View at Google Scholar · View at Scopus
  108. R. Schondorf, R. Stein, R. Roberts, J. Benoit, and W. Cupples, “Dynamic cerebral autoregulation is preserved in neurally mediated syncope,” Journal of Applied Physiology, vol. 91, no. 6, pp. 2493–2502, 2001. View at Google Scholar · View at Scopus
  109. B. D. Levine, C. A. Giller, L. D. Lane, J. C. Buckey, and C. G. Blomqvist, “Cerebral versus systemic hemodynamics during graded orthostatic stress in humans,” Circulation, vol. 90, no. 1, pp. 298–306, 1994. View at Google Scholar · View at Scopus
  110. A. Dagal and A. M. Lam, “Cerebral autoregulation and anesthesia,” Current Opinion in Anaesthesiology, vol. 22, no. 5, pp. 547–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. F. P. Tiecks, A. M. Lam, R. Aaslid, and D. W. Newell, “Comparison of static and dynamic cerebral autoregulation measurements,” Stroke, vol. 26, no. 6, pp. 1014–1019, 1995. View at Google Scholar · View at Scopus
  112. M. Czosnyka, K. Brady, M. Reinhard, P. Smielewski, and L. A. Steiner, “Monitoring of cerebrovascular autoregulation: facts, myths, and missing links,” Neurocritical Care, vol. 10, no. 3, pp. 373–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. R. B. Panerai, “Cerebral autoregulation: from models to clinical applications,” Cardiovascular Engineering, vol. 8, no. 1, pp. 42–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Czosnyka, P. Smielewski, P. Kirkpatrick, D. K. Menon, and J. D. Pickard, “Monitoring of cerebral autoregulation in head-injured patients,” Stroke, vol. 27, no. 10, pp. 1829–1834, 1996. View at Google Scholar · View at Scopus
  115. S. Cencetti, G. Bandinelli, and A. Lagi, “Effect of PCO2 changes induced by head-upright tilt on transcranial Doppler recordings,” Stroke, vol. 28, no. 6, pp. 1195–1197, 1997. View at Google Scholar · View at Scopus
  116. R. R. Diehl, D. Linden, D. Lucke, and P. Berlit, “Phase relationship between cerebral blood flow velocity and blood pressure: a clinical test of autoregulation,” Stroke, vol. 26, no. 10, pp. 1801–1804, 1995. View at Google Scholar · View at Scopus
  117. K. P. Budohoski, M. Reinhard, M. J. H. Aries et al., “Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal?” Neurocritical Care, vol. 17, no. 2, pp. 211–218, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. R. B. Panerai, V. Kerins, L. Fan, P. M. Yeoman, T. Hope, and D. H. Evans, “Association between dynamic cerebral autoregulation and mortality in severe head injury,” British Journal of Neurosurgery, vol. 18, no. 5, pp. 471–479, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons et al., “Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds,” Journal of Neurotrauma, vol. 24, supplement 1, pp. S59–S64, 2007. View at Google Scholar
  120. R. P. White and H. S. Markus, “Impaired dynamic cerebral autoregulation in carotid artery stenosis,” Stroke, vol. 28, no. 7, pp. 1340–1344, 1997. View at Google Scholar · View at Scopus
  121. J. M. Clark, B. E. Skolnick, R. Gelfand et al., “Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 6, pp. 1255–1262, 1996. View at Google Scholar · View at Scopus