Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2013 (2013), Article ID 915983, 8 pages
http://dx.doi.org/10.1155/2013/915983
Research Article

Chronic NaHS Treatment Is Vasoprotective in High-Fat-Fed ApoE−/− Mice

1School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC 3083, Australia
2Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia

Received 22 March 2013; Accepted 12 June 2013

Academic Editor: Karl A. Illig

Copyright © 2013 Asha Ford et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Wang, “Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?” FASEB Journal, vol. 16, no. 13, pp. 1792–1798, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Hart, “Role of sulfur-containing gaseous substances in the cardiovascular system,” Frontiers in Bioscience, vol. 3, pp. 736–749, 2011. View at Google Scholar · View at Scopus
  3. E. Streeter, H. H. Ng, and J. L. Hart, “Hydrogen sulfide as a vasculoprotective factor,” Medical Gas Research, vol. 3, no. 1, p. 9, 2013. View at Google Scholar
  4. N. Shibuya, Y. Mikami, Y. Kimura, N. Nagahara, and H. Kimura, “Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide,” Journal of Biochemistry, vol. 146, no. 5, pp. 623–626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Yang, L. Wu, B. Jiang et al., “H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase,” Science, vol. 322, no. 5901, pp. 587–590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Wang, “Hydrogen sulfide: a new EDRF,” Kidney International, vol. 76, no. 7, pp. 700–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Yan, J. Du, and C. Tang, “The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 22–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Al-Magableh and J. L. Hart, “Mechanism of vasorelaxation and role of endogenous hydrogen sulfide production in mouse aorta,” Naunyn-Schmiedebergs Archives of Pharmacology, vol. 383, no. 4, pp. 403–413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Fan and T. Watanabe, “Inflammatory reactions in the pathogenesis of atherosclerosis,” Journal of Ptherosclerosis and Thrombosis, vol. 10, no. 2, pp. 63–71, 2003. View at Google Scholar · View at Scopus
  10. C. Weber and H. Noels, “Atherosclerosis: current pathogenesis and therapeutic options,” Nature Medicine, vol. 17, no. 11, pp. 1410–1422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. P. Judkins, H. Diep, B. R. S. Broughton et al., “Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE/ mice,” American Journal of Physiology, vol. 298, no. 1, pp. H24–H32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. G. Lynn and R. C. Austin, “Hydrogen sulfide in the pathogenesis of atherosclerosis and its therapeutic potential,” Expert Review of Clinical Pharmacology, vol. 4, no. 1, pp. 97–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Du, Y. Hui, Y. Cheung et al., “The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells,” Heart and Vessels, vol. 19, no. 2, pp. 75–80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Yang, L. Wu, and R. Wang, “Pro-apoptotic effect of endogenous H2S on human aorta smooth muscle cells,” FASEB Journal, vol. 20, no. 3, pp. 553–555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Laggner, M. K. Muellner, S. Schreier et al., “Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl,” Free Radical Research, vol. 41, no. 7, pp. 741–747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Muzaffar, N. Shukla, M. Bond et al., “Exogenous hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac1 activity in human vascular smooth muscle cells,” Journal of Vascular Research, vol. 45, no. 6, pp. 521–528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Z. Zhao, Z. Wang, G. H. Li et al., “Hydrogen sulfide inhibits macrophage-derived foam cell formation,” Experimental Biology and Medicine, vol. 236, no. 2, pp. 169–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Wang, X. Zhao, H. Jin et al., “Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 2, pp. 173–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Zhang, C. Guo, D. Wu et al., “Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression,” PLoS One, vol. 7, no. 7, article e41147, 2012. View at Google Scholar
  20. G. Zagli, R. Patacchini, M. Trevisani et al., “Hydrogen sulfide inhibits human platelet aggregation,” European Journal of Pharmacology, vol. 559, no. 1, pp. 65–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. N. R. Sodha, R. T. Clements, J. Feng et al., “Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury,” Journal of Thoracic and Cardiovascular Surgery, vol. 138, no. 4, pp. 977–984, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Zhao, L. K. Zhang, C. Y. Zhang et al., “Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats,” Hypertension Research, vol. 31, no. 8, pp. 1619–1630, 2008. View at Google Scholar · View at Scopus
  23. W. S. Cheang, W. T. Wong, B. Shen et al., “4-Aminopyridine-sensitive K+ channels contributes to NaHS-induced membrane hyperpolarization and relaxation in the rat coronary artery,” Vascular Pharmacology, vol. 53, no. 3-4, pp. 94–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. W. Lee, Y. Cheng, P. K. Moore, and J. S. Bian, “Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 418, no. 4, pp. 1142–1147, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Kiss, E. A. Deitch, and C. Szabo, “Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition,” Life Sciences, vol. 83, no. 17-18, pp. 589–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Streeter, J. Hart, and E. Badoer, “An investigation of the mechanisms of hydrogen sulfide-induced vasorelaxation in rat middle cerebral arteries,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 385, no. 10, pp. 991–1002, 2012. View at Publisher · View at Google Scholar
  27. W. Zhao and R. Wang, “H2S-induced vasorelaxation and underlying cellular and molecular mechanisms,” American Journal of Physiology, vol. 283, no. 2, pp. H474–H480, 2002. View at Google Scholar · View at Scopus
  28. Y. Cheng, J. F. Ndisang, G. Tang, K. Cao, and R. Wang, “Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats,” American Journal of Physiology, vol. 287, no. 5, pp. H2316–H2323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. H. Leo, A. Joshi, J. L. Hart, and O. L. Woodman, “Endothelium-dependent nitroxylmediated relaxation is resistant to superoxide anion scavenging and preserved in diabetic rat aorta,” Pharmacological Research, vol. 66, no. 5, pp. 383–391, 2012. View at Google Scholar
  30. C. H. Leo, J. L. Hart, and O. L. Woodman, “3′,4′-dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries,” PLoS ONE, vol. 6, no. 6, article e20813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Zhao, J. Zhang, Y. Lu, and R. Wang, “The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener,” EMBO Journal, vol. 20, no. 21, pp. 6008–6016, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Jackson-Weaver, J. Osmond, M. A. Riddle et al., “Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca2+-activated K+channels and smooth muscle Ca2+ sparks,” American Journal of Physiology, vol. 304, no. 11, pp. H1446–H1454, 2013. View at Publisher · View at Google Scholar
  33. G. H. Liang, Q. Xi, C. W. Leffler, and J. H. Jaggar, “Hydrogen sulfide activates Ca2+ sparks to induce cerebral arteriole dilatation,” The Journal of Physiology, vol. 590, no. 11, pp. 2709–2720, 2012. View at Publisher · View at Google Scholar
  34. M. Bucci, A. Papapetropoulos, V. Vellecco et al., “Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 10, pp. 1998–2004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Bucci, A. Papapetropoulos, V. Vellecco et al., “cGMPDependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation,” PLoS One, vol. 7, no. 12, article e53319, 2012. View at Google Scholar
  36. G. J. Waldron, H. Ding, F. Lovren, P. Kubes, and C. R. Triggle, “Acetylcholine-induced relaxation of peripheral arteries isolated from mice lacking endothelial nitric oxide synthase,” British Journal of Pharmacology, vol. 128, no. 3, pp. 653–658, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Carballal, M. Trujillo, E. Cuevasanta et al., “Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest,” Free Radical Biology and Medicine, vol. 50, no. 1, pp. 196–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Stasko, V. Brezova, M. Zalibera, S. Biskupic, and K. Ondrias, “Electron transfer: a primary step in the reactions of sodium hydrosulphide, an H2S/HS- donor,” Free Radical Research, vol. 43, no. 6, pp. 581–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Whiteman, J. S. Armstrong, S. H. Chu et al., “The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’?” Journal of Neurochemistry, vol. 90, no. 3, pp. 765–768, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. K. Yan, T. Chang, H. Wang, L. Wu, R. Wang, and Q. H. Meng, “Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 351, no. 2, pp. 485–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Lu, L. F. Hu, G. Hu, and J. S. Bian, “Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake,” Free Radical Biology and Medicine, vol. 45, no. 12, pp. 1705–1713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Whiteman, N. S. Cheung, Y. Z. Zhu et al., “Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain?” Biochemical and Biophysical Research Communications, vol. 326, no. 4, pp. 794–798, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Kobayashi, N. Inoue, H. Azumi et al., “Expressional changes of the vascular antioxidant system in atherosclerotic coronary arteries,” Journal of Atherosclerosis and Thrombosis, vol. 9, no. 4, pp. 184–190, 2002. View at Google Scholar · View at Scopus
  44. W. G. Land, “Emerging role of innate immunity in organ transplantation—part I: evolution of innate immunity and oxidative allograft injury,” Transplantation Reviews, vol. 26, no. 2, pp. 60–72, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. R. P. Brandes, N. Weissmann, and K. Schröder, “NADPH oxidases in cardiovascular disease,” Free Radical Biology and Medicine, vol. 49, no. 5, pp. 687–706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Muzaffar, J. Y. Jeremy, A. Sparatore, P. Del Soldato, G. D. Angelini, and N. Shukla, “H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: role of protein kinases A and G,” British Journal of Pharmacology, vol. 155, no. 7, pp. 984–994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Fukao, K. Shimada, H. Naito et al., “Voluntary exercise ameliorates the progression of atherosclerotic lesion formation via anti-inflammatory effects in apolipoprotein E-deficient mice,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 12, pp. 1226–1236, 2010. View at Google Scholar · View at Scopus
  48. A. Vinh, R. E. Widdop, S. Y. Chai, and T. A. Gaspari, “Angiotensin IV-evoked vasoprotection is conserved in advanced atheroma,” Atherosclerosis, vol. 200, no. 1, pp. 37–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Tesanovic, A. Vinh, T. A. Gaspari, D. Casley, and R. E. Widdop, “Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 8, pp. 1606–1613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Vinh, R. E. Widdop, G. R. Drummond, and T. A. Gaspari, “Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice,” Cardiovascular Research, vol. 77, no. 1, pp. 178–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Szabõ, “Hydrogen sulphide and its therapeutic potential,” Nature Reviews Drug Discovery, vol. 6, no. 11, pp. 917–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Konno, M. Ikeda, K. Yamaguchi, Y. Ueda, and A. Niwa, “Nephrotoxicity of D-propargylglycine in mice,” Archives of Toxicology, vol. 74, no. 8, pp. 473–479, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. E. R. Deleon, G. F. Stoy, and K. R. Olson, “Passive loss of hydrogen sulfide in biological experiments,” Analytical Biochemistry, vol. 421, no. 1, pp. 203–207, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Li, M. Whiteman, Y. Y. Guan et al., “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation, vol. 117, no. 18, pp. 2351–2360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. K. R. Olson, “A practical look at the chemistry and biology of hydrogen sulfide,” Antioxid Redox Signal, vol. 17, no. 1, pp. 32–44, 2012. View at Google Scholar
  56. B. D. Paul and S. H. Snyder, “H2S signalling through protein sulfhydration and beyond,” Nature Reviews Molecular Cell Biology, vol. 13, no. 8, pp. 499–507, 2012. View at Google Scholar
  57. J. W. Calvert, W. A. Coetzee, and D. J. Lefer, “Novel insights into hydrogen sulfide-mediated cytoprotection,” Antioxidants and Redox Signaling, vol. 12, no. 10, pp. 1203–1217, 2010. View at Publisher · View at Google Scholar · View at Scopus