Table of Contents
International Journal of Vehicular Technology
Volume 2014 (2014), Article ID 495036, 10 pages
http://dx.doi.org/10.1155/2014/495036
Research Article

A Probabilistic Analysis of Path Duration Using Routing Protocol in VANETs

1Ambedkar Institute of Advanced Communication Technologies & Research, Delhi 110031, India
2Delhi Technological University, Delhi 110042, India
3Jawaharlal Nehru University, New Delhi 110067, India

Received 28 February 2014; Revised 20 June 2014; Accepted 5 July 2014; Published 17 July 2014

Academic Editor: Rakesh Mishra

Copyright © 2014 Ram Shringar Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, Status Report on Road Safety, World Health Organization (WHO), Geneva, Switzerland, 2013.
  2. T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and Y. Nemoto, “A stable routing protocol to support ITS services in VANET networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3337–3347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Kaiwartya and S. Kumar, “Geocast routing: Recent advances and future challenges in vehicular adhoc networks,” in Proceedings of Signal Processing and Integrated Networks (SPIN '14), pp. 291–296, 2014.
  4. O. Kaiwartya and S. Kumar, “Cache agent based geocasting (CAG) in VANETs,” International Journal of Information and Communication Technology. In press.
  5. O. Kaiwartya, S. Kumar, and R. Kasana, “Traffic light based time stable geocast (T-TSG) routing for urban VANETs,” in Proceedings of the 6th International Conference on Contemporary Computing (IC3 '13), pp. 113–117, 2013.
  6. O. Kaiwartya and S. Kumar, “GeoPSO: geocasting through particle swarm optimization in vehicular adhoc networks,” in Proceedings of Information Systems and Design of Communication (ISDOC '14), ACM, May 2014.
  7. O. Kaiwartya and S. Kumar, “Enhanced caching for geocast routing in vehicular Ad-Hoc networks (ECGR),” in Proceedings of the International Conference on Advanced Computing, Networking and Informatics (ICACNI '13), vol. 243, pp. 213–220, Springer, 2013.
  8. J. J. Blum, A. Eskandarian, and L. J. Huffman, “Challenges of intervehicle Ad Hoc networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp. 347–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Alasmary and W. Zhuang, “Mobility impact in IEEE 802.11p infrastructure less vehicular networks,” Ad Hoc Networks, vol. 10, no. 2, pp. 222–230, 2012. View at Publisher · View at Google Scholar
  10. R. J. La and Y. Han, “Distribution of path durations in mobile ad hoc networks and path selection,” IEEE/ACM Transactions on Networking, vol. 15, no. 5, pp. 993–1006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. “DSRC Standards: What's New?” ITS Standards Advisory number 3, US Department of Transportation, http://www.its.dot.gov/DSRC/.
  12. R. Popescu-Zeletin, I. Radusch, and M. A. Rigani, Vehicular-2-X Communication: State-Of-The-Art and Research in Mobile Vehicular Ad Hoc Networks, Springer, New York, NY, USA, 2010.
  13. A. F. Molisch, F. Tufvesson, J. Karedal, and C. F. Mecklenbräuker, “A survey on vehicle-to-vehicle propagation channels,” IEEE Wireless Communications, vol. 16, no. 6, pp. 12–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Gozalvez, M. Sepulcre, and R. Bauza, “IEEE 802.11p vehicle to infrastructure communications in urban environments,” IEEE Communications Magazine, vol. 50, no. 5, pp. 176–183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Sadagopan, F. Bai, B. Krishnamachari, and A. Helmy, “PATHS: analysis of PATH duration statistics and their impact on reactive MANET routing protocols,” in Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC '03), pp. 245–256, June 2003. View at Scopus
  16. G. Lim, K. Shin, S. Lee, H. Yoon, and J. S. Ma, “Link stability and route lifetime in ad-hoc networks,” EURASIP Journal on Wireless Communications and Networking, pp. 1–6, 2007. View at Google Scholar
  17. Y. Han and R. J. La, “Maximizing path durations in mobile ad-hoc networks,” in Proceedings of the 40th Annual Conference on Information Sciences and Systems (CISS '06), pp. 26–31, Princeton, NJ, USA, March 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. De, A. Caruso, T. Chaira, and S. Chessa, “Bounds on hop distance in greedy routing approach in wireless ad hoc networks,” International Journal of Wireless and Mobile Computing, vol. 1, no. 2, pp. 131–140, 2006. View at Google Scholar
  19. R. S. Raw and D. K. Lobiyal, “B-MFR routing protocol for vehicular ad hoc networks,” in Proceedings of the International Conference on Networking and Information Technology (ICNIT '10), pp. 420–423, Manila, Philippines, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. S. Raw and D. K. Lobiyal, “E-DIR: a directional routing protocol for VANETs in a city traffic environment,” International Journal of Information and Communication Technology, vol. 3, no. 3, pp. 242–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ukkusuri and L. Du, “Geometric connectivity of vehicular ad hoc networks: analytical characterization,” Transportation Research Part C: Emerging Technologies, vol. 16, no. 5, pp. 615–634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Harb and J. McNair, “Analytical study of the expected number of hops in wireless Ad Hoc network,” in Wireless Algorithms, Systems, and Applications, vol. 5258 of Lecture Notes in Computer Science, pp. 63–71, 2008. View at Google Scholar
  23. K. Namuduri and R. Pendse, “Analytical estimation of path duration in mobile ad hoc networks,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1828–1835, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Raw and S. Das, “Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments,” Wireless Personal Communications, vol. 68, no. 1, pp. 65–78, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Ghafoor, K. Insoo, and G. Nasirud-Din, “Neighboring and connectivity-aware routing in VANETs,” The Scientific World Journal, vol. 2014, Article ID 789247, 10 pages, 2014. View at Publisher · View at Google Scholar
  26. C. Chen, Y. Jin, Q. Pei, and N. Zhang, “A connectivity-aware intersection-based routing in VANETs,” EURASIP Journal on Wireless Communications and Networking, vol. 2014, article 42, 2014. View at Publisher · View at Google Scholar
  27. F. K. Karnadi, Z. H. Mo, and K. Lan, “Rapid generation of realistic mobility models for VANET,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '07), pp. 2508–2513, IEEE, March 2007. View at Publisher · View at Google Scholar · View at Scopus