Table of Contents
International Journal of Vehicular Technology
Volume 2014 (2014), Article ID 719413, 11 pages
http://dx.doi.org/10.1155/2014/719413
Research Article

Driving Posture Recognition by Joint Application of Motion History Image and Pyramid Histogram of Oriented Gradients

1Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, SIP, Suzhou 215123, China
2Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK

Received 3 August 2013; Accepted 30 October 2013; Published 28 January 2014

Academic Editor: Aboelmagd Noureldin

Copyright © 2014 Chao Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “WHO World report on road traffic injury prevention,” http://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/en/.
  2. T. B. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in vision-based human motion capture and analysis,” Computer Vision and Image Understanding, vol. 104, no. 2-3, pp. 90–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Fan, B.-C. Yin, and Y.-F. Sun, “Yawning detection for monitoring driver fatigue,” in Proceedings of the 6th International Conference on Machine Learning and Cybernetics (ICMLC '07), pp. 664–668, Hong Kong, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Grace, V. E. Byrne, D. M. Bierman et al., “A drowsy driver detection system for heavy vehicles,” in Proceedings of the 17th Digital Avionics Systems Conference, vol. 2, pp. I36/1–I36/8, Bellevue, Wash, USA, 1998.
  5. E. Wahlstrom, O. Masoud, and N. Papanikolopoulos, “Vision-based methods for driver monitoring,” in Proceedings of the IEEE Intelligent Transportation Systems, vol. 2, pp. 903–908, Shanghai, China, October 2003.
  6. A. Doshi and M. M. Trivedi, “On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 3, pp. 453–462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. J. Jo, S. J. Lee, H. G. Jung, K. R. Park, and J. J. Kim, “Vision-basedmethod for detecting driver drowsiness and distraction in driver monitoringsystem,” Optical Engineering, vol. 50, no. 12, pp. 127202–127224, 2011. View at Google Scholar
  8. X. Liu, Y. D. Zhu, and K. Fujimura, “Real-time pose classication for driver monitoring,” in Proceedings of the IEEE Intelligent Transportation Systems, pp. 174–178, Singapore, September 2002.
  9. P. Watta, S. Lakshmanan, and Y. Hou, “Nonparametric approaches for estimating driver pose,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 2028–2041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kato, T. Fujii, and M. Tanimoto, “Detection of driver's posture in the car by using far infrared camera,” in Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 339–344, Parma, Italy, June 2004. View at Scopus
  11. S. Y. Cheng, S. Park, and M. M. Trivedi, “Multi-spectral and multi-perspective video arrays for driver body tracking and activity analysis,” Computer Vision and Image Understanding, vol. 106, no. 2-3, pp. 245–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Veeraraghavan, N. Bird, S. Atev, and N. Papanikolopoulos, “Classifiers for driver activity monitoring,” Transportation Research C, vol. 15, no. 1, pp. 51–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Veeraraghavan, S. Atev, N. Bird, P. Schrater, and N. Papanikolopoulos, “Driver activity monitoring through supervised and unsupervised learning,” in Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, pp. 895–900, Vienna, Austria, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. H. Zhao, B. L. Zhang, J. He, and J. Lian, “Recognition of driving postures by contourlet transform and random forests,” IET Intelligent Transport Systems, vol. 6, no. 2, pp. 161–168, 2012. View at Publisher · View at Google Scholar
  15. C. H. Zhao, B. L. Zhang, X. Z. Zhang, S. Q. Zhao, and H. X. Li, “Recognition of driving postures by combined features and random subspace ensemble of multilayer perception classiffer,” Journal of Neural Computing and Applications, vol. 22, no. 1, Supplement, pp. 175–184, 2000. View at Publisher · View at Google Scholar
  16. C. Tran, A. Doshi, and M. M. Trivedi, “Modeling and prediction of driver behavior by foot gesture analysis,” Computer Vision and Image Understanding, vol. 116, no. 3, pp. 435–445, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. McCall and M. M. Trivedi, “Visual context capture and analysis for driver attention monitoring,” in Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems (ITSC '04), pp. 332–337, Washington, DC, USA, October 2004. View at Scopus
  18. K. Torkkola, N. Massey, and C. Wood, “Driver inattention detection through intelligent analysis of readily available sensors,” in Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems (ITSC '04), pp. 326–331, Washington, DC, USA, October 2004. View at Scopus
  19. D. A. Johnson and M. M. Trivedi, “Driving style recognition using a smartphone as a sensor platform,” in Proceedings of the 14th IEEE International Intelligent Transportation Systems Conference (ITSC '11), pp. 1609–1615, Washington, DC, USA, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. V. Desai and M. A. Haque, “Vigilance monitoring for operator safety: a simulation study on highway driving,” Journal of Safety Research, vol. 37, no. 2, pp. 139–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Rigas, Y. Goletsis, P. Bougia, and D. I. Fotiadis, “Towards driver's state recognition on real driving conditions,” International Journal of Vehicular Technology, vol. 2011, Article ID 617210, 14 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. H. Kutila, M. Jokela, T. Mäkinen, J. Viitanen, G. Markkula, and T. W. Victor, “Driver cognitive distraction detection: feature estimation and implementation,” Proceedings of the Institution of Mechanical Engineers D, vol. 221, no. 9, pp. 1027–1040, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. F. Bobick and J. W. Davis, “The recognition of human movement using temporal templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp. 257–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Wang, K. Huang, and T. Tan, “Human activity recognition based on R transform,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '07), pp. 1–8, Minneapolis, Minn, USA, June 2007.
  25. H. Chen, H. Chen, Y. Chen, and S. Lee, “Human action recognition using star skeleton,” in Proceedings of the International Workshop on Video Surveillance and Sensor Networks (VSSN '06), pp. 171–178, Santa Barbara, Calif, USA, October 2006.
  26. W. Liang and D. Suter, “Informative shape representations for human action recognition,” in Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), pp. 1266–1269, Hong Kong, August 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. A. Efros, A. C. Berg, G. Mori, and J. Malik, “Recognizing action at a distance,” in Proceedings of the International Conference on Computer Vision, vol. 2, pp. 726–733, Nice, France, October 2003. View at Scopus
  28. A. R. Ahad, T. Ogata, J. K. Tan, H. S. Kim, and S. Ishikawa, “Motion recognition approach to solve overwriting in complex actions,” in Proceedings of the 8th IEEE International Conference on Automatic Face and Gesture Recognition (FG '08), pp. 1–6, Amsterdam, The Netherlands, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Ali and M. Shah, “Human action recognition in videos using kinematic features and multiple instance learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 288–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Danafar and N. Gheissari, “Action recognition for surveillanceapplications using optic ow and SVM,” in Proceedings of the Asian Conferenceon Computer Vision (ACCV '07), pp. 457–466, Tokyo, Japan, November 2007.
  31. I. Laptev and T. Lindeberg, “Space-time interest points,” in Proceedings of the 9th IEEE International Conference on Computer Vision, pp. 432–439, Nice, France, October 2003. View at Scopus
  32. I. Laptev, B. Caputo, C. Schüldt, and T. Lindeberg, “Local velocity-adapted motion events for spatio-temporal recognition,” Computer Vision and Image Understanding, vol. 108, no. 3, pp. 207–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Park and M. Trivedi, “Driver activity analysis for intelligent vehicles: issues and development framework,” in Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 644–649, Las Vegas, Nev, USA, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Bosch, A. Zisserman, and X. Munoz, “Representing shape with a spatial pyramid kernel,” in Proceedings of the 6th ACM International Conference on Image and Video Retrieval (CIVR '07), pp. 401–408, Amsterdam, The Netherlands, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 886–893, San Diego, Calif, USA, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. G. R. Bradski and J. Davis, “Motion segmentation and pose recognition with motion history gradients,” in Proceedings of the 5th IEEE Workshop on Applications of Computer Vision, pp. 238–244, Palm Springs, Calif, USA, 2000.
  37. O. Masoud and N. Papanikolopoulos, “A method for human action recognition,” Image and Vision Computing, vol. 21, no. 8, pp. 729–743, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Yi, D. Rajan, and L.-T. Chia, “A new motion histogram to index motion content in video segments,” Pattern Recognition Letters, vol. 26, no. 9, pp. 1221–1231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Flusser, T. Suk, and B. Zitov, Moments and Moment Invariants in Pattern Recognition, John Wiley & Sons, Chichester, UK, 2009.
  40. S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: spatial pyramid matching for recognizing natural scene categories,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '06), pp. 2169–2178, New York, NY, USA, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classiffcation, Wiley-Interscience, 2nd edition, 2000.
  42. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus