Table of Contents Author Guidelines Submit a Manuscript
International Journal of Zoology
Volume 2011, Article ID 295026, 6 pages
http://dx.doi.org/10.1155/2011/295026
Review Article

Gammarus-Microbial Interactions: A Review

Aquatic Biology Program, Department of Biological Sciences, The University of Alabama, 1106 Bevill Building, 201 Seventh Avenue, P.O. Box 870206, Tuscaloosa, AL 35487, USA

Received 14 March 2011; Revised 4 May 2011; Accepted 19 May 2011

Academic Editor: Almut Gerhardt

Copyright © 2011 Daniel Nelson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Macneil, J. T. A. Dick, and R. W. Elwood, “The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept,” Biological Reviews of the Cambridge Philosophical Society, vol. 72, no. 3, pp. 349–364, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. G. W. Minshall, “Role of allochthonous detritus in the trophic structure of a wodland springbrook community,” Ecology, vol. 48, pp. 139–149, 1967. View at Google Scholar
  3. D. Nelson, Food web structure of cave streams in southwestern Illinois and the survival and growth of the stygophilic Gammarus troglophilus (Crustacea: Amphipoda) under laboratory conditions, M.S. thesis, University of Idaho, Moscow, Idaho, USA, 2010.
  4. J. W. Moore, “The role of algae in the diet of Asellus aquaticus L. and Gammrus pulex L,” Journal of Animal Ecology, vol. 44, pp. 719–730, 1975. View at Google Scholar
  5. H. Orav-Kotta, J. Kotta, K. Herkül, I. Kotta, and T. Paalme, “Seasonal variability in the grazing potential of the invasive amphipod Gammarus tigrinus and the native amphipod Gammarus salinus (Amphipoda: Crustacea) in the northern Baltic Sea,” Biological Invasions, vol. 11, no. 3, pp. 597–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. C. Culver and D. W. Fong, “Species interactions in cave stream communities: experimental results and microdistribution effects,” American Midland Naturalist, vol. 126, pp. 364–379, 1991. View at Google Scholar
  7. F. M. Wilhelm and D. W. Schindler, “Effects of Gammarus lacustris (Crustacea: Amphipoda) on plankton community structure in an alpine lake,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 56, no. 8, pp. 1401–1408, 1999. View at Google Scholar · View at Scopus
  8. J. T. A. Dick, I. Montgomery, and R. W. Elwood, “Replacement of the indigenous amphipod Gammarus duebeni celticus by the introduced G. pulex: differential cannibalism and mutual predation,” Journal of Animal Ecology, vol. 62, no. 1, pp. 79–88, 1993. View at Google Scholar · View at Scopus
  9. J. T. Dick, “The cannibalistic behaviour of two Gammarus species (Crustacea: Amphipoda),” Journal of Zoology, vol. 236, no. 4, pp. 697–706, 1995. View at Google Scholar · View at Scopus
  10. K. W. Cummins, “Trophic relations of aquatic insects,” Annual Review of Entomology, vol. 18, pp. 183–206, 1973. View at Google Scholar
  11. K. W. Cummins, “Structure and function of stream ecosystems,” Bioscience, vol. 24, pp. 631–641, 1974. View at Google Scholar
  12. K. W. Cummins and M. J. Klug, “Feeding ecology of stream invertebrates,” Annual Review of Ecology and Systematics, vol. 10, pp. 147–172, 1979. View at Google Scholar
  13. J. L. Meyer, “The microbial loop in flowing waters,” Microbial Ecology, vol. 28, no. 2, pp. 195–199, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. R. O. Hall and J. L. Meyer, “The trophic significance of bacteria in a detritus-based stream food web,” Ecology, vol. 79, no. 6, pp. 1995–2012, 1998. View at Google Scholar · View at Scopus
  15. K. S. Simon and E. F. Benfield, “Leaf and wood breakdown in cave streams,” Journal of the North American Benthological Society, vol. 20, no. 4, pp. 550–563, 2001. View at Google Scholar · View at Scopus
  16. R. H. Boling, E. D. Goodman, J. O. Zimmer et al., “Toward a model of detritus processing in a woodland stream,” Ecology, vol. 56, pp. 141–151, 1975. View at Google Scholar
  17. T. L. Arsuffi and K. Suberkropp, “Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa,” Oecologia, vol. 79, no. 1, pp. 30–37, 1989. View at Publisher · View at Google Scholar · View at Scopus
  18. K. S. Simon, E. F. Benfield, and S. A. Macko, “Food web structure and the role of epilithic biofilms in cave streams,” Ecology, vol. 84, no. 9, pp. 2395–2406, 2003. View at Google Scholar · View at Scopus
  19. F. Bärlocher and B. Kendrick, “Fungi and food preferences of Gammarus pseudolimnaeus,” Archiv für Hydrobiologie, vol. 72, pp. 501–516, 1973. View at Google Scholar
  20. M. Kostalos and R. L. Seymour, “Role of microbially enriched detritus in the nutrition of Gammarus minus (Amphipoda),” Oikos, vol. 27, pp. 512–516, 1976. View at Google Scholar
  21. Q. Rong, K. R. Sridhar, and F. Bärlocher, “Food selection in three leaf-shredding stream invertebrates,” Hydrobiologia, vol. 316, no. 3, pp. 173–181, 1995. View at Google Scholar · View at Scopus
  22. C. Assmann and E. V. Elert, “The impact of fungal extracts on leaf litter on the food preference of Gammarus roeselii,” International Review of Hydrobiology, vol. 94, no. 4, pp. 484–496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Pöckl, “Laboratory studies on growth, feeding, moulting and mortality in the freshwater amphipods Gammarus fossarum and G. roeseli,” Archiv für Hydrobiologie, vol. 134, no. 2, pp. 223–253, 1995. View at Google Scholar · View at Scopus
  24. M. A. S. Graça, L. Maltby, and P. Calow, “Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus. II. Effects on growth, reproduction and physiology,” Oecologia, vol. 96, no. 3, pp. 304–309, 1993. View at Google Scholar · View at Scopus
  25. F. Bärlocher, “On trophic interactions between microorganisms and animals,” The American Naturalist, vol. 114, pp. 147–148, 1979. View at Google Scholar
  26. P. Kemp, “Potential impact on bacteria of grazing by a macrofaunal deposit-feeder, and the fate of bacterial production,” Marine Ecology Progress Series, vol. 36, pp. 151–161, 1987. View at Google Scholar
  27. S. J. Morrison and D. C. White, “Effects of grazing by estuarine gammaridean amphipods on the microbiota of allochthonous detritus,” Applied and Environmental Microbiology, vol. 40, pp. 659–671, 1980. View at Google Scholar
  28. M. L. Pace and J. J. Cole, “Regulation of bacteria by resources and predation tested in whole-lake experiments,” Limnology and Oceanography, vol. 41, no. 7, pp. 1448–1460, 1996. View at Google Scholar · View at Scopus
  29. T. J. Cooney and K. S. Simon, “Influence of dissolved organic matter and invertebrates on the function of microbial films in groundwater,” Microbiology of Aquatic Systems, vol. 58, pp. 599–610, 2009. View at Google Scholar
  30. J. Kinsey, T. J. Cooney, and K. S. Simon, “A comparison of the leaf shredding ability and influence on microbial films of surface and cave forms of Gammarus minus Say,” Hydrobiologia, vol. 589, no. 1, pp. 199–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Jenio, “The life cycle and ecology of Gammarus troglophilus Hubricht and Mackin,” Crustaceana Supplement, vol. 6, pp. 204–215, 1980. View at Google Scholar
  32. T. M. Iversen, “Ingestion and growth in Sericostoma personatum (Trichoptera) in relation to the nitrogen content of ingested leaves,” Oikos, vol. 25, no. 3, pp. 278–282, 1974. View at Google Scholar · View at Scopus
  33. M. A. S. Graça, C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies, and C. Barrios, “Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams,” Freshwater Biology, vol. 46, no. 7, pp. 947–957, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. F. J. Triska, Seasonal distribution of aquatic hyphomycetes in relation to the disappearance of leaf litter from a woodland stream, Ph.D. dissertation, University of Pittsburgh, Pittsburgh, Pa, USA, 1970.
  35. N. K. Kaushik and H. B. N. Hynes, “The fate of the dead leaves that fall into streams,” Archiv für Hydrobiologie, vol. 68, pp. 465–515, 1971. View at Google Scholar
  36. J. S. Rounick and M. J. Winterbourn, “Leaf processing in two contrasting beech forest streams: effects of physical and biotic factors on litter breakdown,” Archiv für Hydrobiologie, vol. 96, pp. 448–474, 1983. View at Google Scholar
  37. F. Bärlocher, “The role of fungi in the nutrition of stream invertebrates,” Botanical Journal of the Linnean Society, vol. 91, pp. 83–94, 1985. View at Google Scholar
  38. K. Suberkropp, “Interactions with invertebrates,” in The Ecology of Aquatic Hyphomycetes, F. Bärlocher, Ed., pp. 118–134, Springer, New York, NY, USA, 1992. View at Google Scholar
  39. M. A. S. Graça, “Patterns and processes in detritus-based stream systems,” Limnologica, vol. 23, pp. 107–114, 1993. View at Google Scholar
  40. M. A. S. Graça, “The role of invertebrates on leaf litter decomposition in streams—a review,” International Review of Hydrobiology, vol. 86, no. 4-5, pp. 383–393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Friberg and D. Jacobsen, “Feeding plasticity of two detritivore-shredders,” Freshwater Biology, vol. 32, no. 1, pp. 133–142, 1994. View at Google Scholar · View at Scopus
  42. M. A. S. Graça, L. Maltby, and P. Calow, “Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: feeding strategies,” Oecologia, vol. 93, no. 1, pp. 139–144, 1993. View at Publisher · View at Google Scholar · View at Scopus
  43. W. H. Karasov and C. Martinez del Rio, Physiological Ecology, Princeton University Press, Princeton, NJ, USA, 2007.
  44. F. Bärlocher and B. Kendrick, “Assimilation efficiency of Gammarus pseudolimnaeus (Amphipoda) feeding on fungal mycelium or autumn-shed leaves,” Oikos, vol. 26, pp. 55–59, 1975. View at Google Scholar
  45. R. J. Barsdate, R. T. Prentki, and T. Fenchel, “Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers,” Oikos, vol. 25, no. 3, pp. 239–251, 1974. View at Google Scholar · View at Scopus
  46. L. E. Barnese, R. L. Lowe, and R. D. Hunter, “Comparative grazing efficiencies of pulmonate and prosobranch snails,” Journal of the North American Benthological Society, vol. 9, pp. 35–44, 1990. View at Google Scholar
  47. G. J. C. Underwood and J. D. Thomas, “Grazing interactions between pulmonate snails and epiphytic algae and bacteria,” Freshwater Biology, vol. 23, no. 3, pp. 505–522, 1990. View at Google Scholar · View at Scopus
  48. N. V. C. Polunin, “The decomposition of emergent macrophytes in fresh water,” in Advances in Ecological Research, Volume 14, A. Macfadyen and E. D. Ford, Eds., pp. 115–166, Academic Press, New York, NY, USA, 1984. View at Google Scholar
  49. J. R. Lawrence, B. Scharf, G. Packroff, and T. R. Neu, “Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition,” Microbial Ecology, vol. 44, no. 3, pp. 199–207, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. P. J. Mulholland, A. D. Steinman, E. R. Marzolf, D. R. Hart, and D. L. DeAngelis, “Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams,” Oecologia, vol. 98, no. 1, pp. 40–47, 1994. View at Google Scholar · View at Scopus
  51. T. J. Battin, L. A. Kaplan, J. D. Newbold, and C. M. E. Hansen, “Contributions of microbial biofilms to ecosystem processes in stream mesocosms,” Nature, vol. 426, no. 6965, pp. 439–442, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. R. W. Sterner, “Modelling interactions of food quality and quantity in homeostatic consumers,” Freshwater Biology, vol. 38, no. 3, pp. 473–481, 1997. View at Google Scholar · View at Scopus
  53. R. W. Sterner and J. J. Elser, Ecological Stoichiometery: The Biology of Elements from Molecules to the Biosphere, Princeton University Press, Princeton, NJ, USA, 2002.
  54. M. T. Brett and D. C. Müller-Navarra, “The role of highly unsaturated fatty acids in aquatic foodweb processes,” Freshwater Biology, vol. 38, no. 3, pp. 483–499, 1997. View at Google Scholar · View at Scopus
  55. M. Torres-Ruiz, J. D. Wehr, and A. A. Perrone, “Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers,” Journal of the North American Benthological Society, vol. 26, no. 3, pp. 509–522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. W. F. Cross, J. P. Benstead, P. C. Frost, and S. A. Thomas, “Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives,” Freshwater Biology, vol. 50, no. 11, pp. 1895–1912, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. P. C. Frost, J. P. Benstead, W. F. Cross et al., “Threshold elemental ratios of carbon and phosphorus in aquatic consumers,” Ecology Letters, vol. 9, no. 7, pp. 774–779, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. A. Liess and H. Hillebrand, “Stoichiometric variation in C:N, C:P, and N:P ratios of littoral benthic invertebrates,” Journal of the North American Benthological Society, vol. 24, no. 2, pp. 256–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Torres-Ruiz, J. D. Wehr, and A. A. Perrone, “Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids,” Journal of the North American Benthological Society, vol. 29, no. 3, pp. 803–813, 2010. View at Publisher · View at Google Scholar · View at Scopus