Table of Contents Author Guidelines Submit a Manuscript
International Journal of Zoology
Volume 2011 (2011), Article ID 967274, 10 pages
http://dx.doi.org/10.1155/2011/967274
Research Article

Figs Are More Than Fallback Foods: The Relationship between Ficus and Cebus in a Tropical Dry Forest

Department of Anthropology, University of Calgary, 2500 University Drive NW Calgary, AB, Canada T2N 1N4

Received 1 January 2011; Revised 4 April 2011; Accepted 29 July 2011

Academic Editor: Michael Thompson

Copyright © 2011 Nigel A. Parr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Janzen, “How to be a fig,” Annual Review of Ecology and Systematics, vol. 10, pp. 13–51, 1979. View at Google Scholar · View at Scopus
  2. M. Shanahan, S. O. Samson, S. G. Compton, and R. Corlett, “Fig-eating by vertebrate frugivores: a global review,” Biological Reviews of the Cambridge Philosophical Society, vol. 76, no. 4, pp. 529–572, 2001. View at Google Scholar · View at Scopus
  3. S. B. Lomáscolo, D. J. Levey, R. T. Kimball, B. M. Bolker, and H. T. Alborn, “Dispersers shape fruit diversity in Ficus (Moraceae),” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14668–14672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. B. Lomáscolo, P. Speranza, and R. T. Kimball, “Correlated evolution of fig size and color supports the dispersal syndromes hypothesis,” Oecologia, vol. 156, no. 4, pp. 783–796, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Gautier-Hion, J. M. Duplantier, R. Quris et al., “Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community,” Oecologia, vol. 65, no. 3, pp. 324–337, 1985. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Terborgh, Five New World Primates: A Study in Comparative Ecology, Princeton University Press, Princeton, NJ, USA, 1983.
  7. A. Gautier-Hion and G. Michaloud, “Are figs always keystone resources for tropical frugivorous vertebrates? A test in Gabon,” Ecology, vol. 70, no. 6, pp. 1826–1833, 1989. View at Google Scholar · View at Scopus
  8. A. D. Melin, L. M. Fedigan, C. Hiramatsu, T. Hiwatashi, N. Parr, and S. Kawamura, “Fig foraging by dichromatic and trichromatic cebus capucinus in a tropical dry forest,” International Journal of Primatology, vol. 30, no. 6, pp. 753–775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Felton, A. Felton, J. T. Wood, and D. B. Lindenmayer, “Diet and feeding ecology of Ateles chamek in a Bolivian semihumid forest: the importance of Ficus as a staple food resource,” International Journal of Primatology, vol. 29, no. 2, pp. 379–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Leighton, “Modeling dietary selectivity by Bornean orangutans: evidence for integration of multiple criteria in fruit selection,” International Journal of Primatology, vol. 14, no. 2, pp. 257–313, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. E. R. Vogel, L. Haag, T. Mitra-Setia, C. P. Van Schaik, and N. J. Dominy, “Foraging and ranging behavior during a fallback episode: hylobates albibarbis and Pongo pygmaeus wurmbii compared,” American Journal of Physical Anthropology, vol. 140, no. 4, pp. 716–726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. R. McConkey, A. Ario, F. Aldy, and D. J. Chivers, “Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu, Central Kalimantan,” International Journal of Primatology, vol. 24, no. 1, pp. 19–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. E. N. Vanderhoff and B. Grafton, “Behavior of tamarins, tanagers and manakins in a strangler fig (Ficus sp.) in Suriname, South America: implications for seed dispersal,” Biota Neotropica, vol. 9, no. 3, pp. 419–422, 2009. View at Google Scholar · View at Scopus
  14. J. C. Serio-Silva, V. Rico-Gray, L. T. Hernández-Salazar, and R. Espinosa-Gómez, “The role of Ficus (Moraceae) in the diet and nutrition of a troop of Mexican howler monkeys, Alouatta palliata mexicana, released on an island in southern Veracruz, Mexico,” Journal of Tropical Ecology, vol. 18, no. 6, pp. 913–928, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. G. Tello, “Frugivores at a fruiting Ficus in south-eastern Peru,” Journal of Tropical Ecology, vol. 19, no. 6, pp. 717–721, 2003. View at Google Scholar · View at Scopus
  16. C. M. Hladik, A. Hladik, J. Bousset, P. Valdebouze, G. Viroben, and J. Delort-Laval, “Le régime alimentaire des primates de l’île de Barro-Colorado (Panama),” Folia Primatologica, vol. 16, no. 1, pp. 85–122, 1971. View at Google Scholar · View at Scopus
  17. A. M. Felton, A. Felton, D. B. Lindenmayer, and W. J. Foley, “Nutritional goals of wild primates,” Functional Ecology, vol. 23, no. 1, pp. 70–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Felton, A. Felton, D. Raubenheimer et al., “Protein content of diets dictates the daily energy intake of a free-ranging primate,” Behavioral Ecology, vol. 20, no. 4, pp. 685–690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. G. M. McCabe, Diet and Nutrition in White-Faced Capuchins (Cebus capucinus): Effects of Group, Sex and Reproductive State, Department of Anthropology, University of Calgary, Calgary, Canada, 2005.
  20. T. Urquiza-Haas, J. C. Serio-Silva, and L. T. Hernández-Salazar, “Traditional nutritional analyses of figs overestimates intake of most nutrient fractions: a study of Ficus perforata consumed by howler monkeys (Alouatta palliata mexicana),” American Journal of Primatology, vol. 70, no. 5, pp. 432–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. E. R. Vogel, “Rank differences in energy intake rates in white-faced capuchin monkeys, Cebus capucinus: the effects of contest competition,” Behavioral Ecology and Sociobiology, vol. 58, no. 4, pp. 333–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Milton, “Macronutrient patterns of 19 species of Panamanian fruits from Barro Colorado Island,” Neotropical Primates, vol. 15, no. 1, pp. 1–7, 2008. View at Google Scholar
  23. D. W. Morrison, “Efficiency of food utilization by fruit bats,” Oecologia, vol. 45, no. 2, pp. 270–273, 1980. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Jordano, “Fig-seed predation and dispersal by birds,” Biotropica, vol. 15, no. 1, pp. 38–41, 1983. View at Google Scholar · View at Scopus
  25. R. Coates-Estrada and A. Estrada, “Fruiting and frugivores at a strangler fig in the tropical rain forest of Los Tuxtlas, Mexico,” Journal of Tropical Ecology, vol. 2, no. 4, pp. 349–357, 1986. View at Google Scholar
  26. T. W. Schoener, “Theory of feeding strategies,” Annual Review of Ecology and Systematics, vol. 2, pp. 369–404, 1971. View at Google Scholar
  27. G. H. Pyke, H. R. Pulliam, and E. L. Charnov, “Optimal foraging: a selective review of theory and tests,” The Quarterly Review of Biology, vol. 52, no. 2, pp. 137–154, 1977. View at Google Scholar
  28. R. Arditi and B. Dacorogna, “Optimal foraging on arbitrary food distributions and the definition of habitat patches,” American Naturalist, vol. 131, no. 6, pp. 837–846, 1988. View at Google Scholar · View at Scopus
  29. C. Chapman, “Patch use and patch depletion by the spider and howling monkeys of Santa Rosa National Park, Costa Rica,” Behaviour, vol. 105, no. 1-2, pp. 99–116, 1988. View at Google Scholar · View at Scopus
  30. T. H. Clutton-Brock and P. H. Harvey, “Primate ecology and social organization,” Journal of Zoology, vol. 183, no. 1, pp. 1–39, 1977. View at Google Scholar
  31. C. H. Janson and M. L. Goldsmith, “Predicting group size in primates: foraging costs and predation risks,” Behavioral Ecology, vol. 6, no. 3, pp. 326–336, 1995. View at Google Scholar · View at Scopus
  32. L. M. Fedigan and K. Jack, “Neotropical primates in a regenerating Costa Rican dry forest: a comparison of howler and capuchin population patterns,” International Journal of Primatology, vol. 22, no. 5, pp. 689–713, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. F. A. Campos and L. M. Fedigan, “Behavioral adaptations to heat stress and water scarcity in white-faced capuchins (Cebus capucinus) in santa rosa national park, costa rica,” American Journal of Physical Anthropology, vol. 138, no. 1, pp. 101–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. H. Janzen, “Seasonal change in abundance of large nocturnal dung beetles ( Scarabaeidae) in a Costa Rican deciduous forest and adjacent horse pasture,” Oikos, vol. 41, no. 2, pp. 274–283, 1983. View at Google Scholar · View at Scopus
  35. C. P. van Schaik and K. R. Pfannes, “Tropical climates and phenology: a primate perspective,” in Seasonality In Primates, D. K. Brockman and C. P. van Schaik, Eds., pp. 57–104, Cambridge University Press, Cambridge, UK, 2005. View at Google Scholar
  36. D. M. Fragaszy, E. Visalberghi, and L. M. Fedigan, The Complete Capuchin: The Biology of the Genus Cebus, Cambridge University Press, Cambridge, UK, 2004.
  37. C. A. Chapman and L. M. Fedigan, “Dietary differences between neighboring Cebus capucinus groups: local traditions, food availability or responses to food profitability?” Folia Primatologica, vol. 54, no. 3-4, pp. 177–186, 1990. View at Google Scholar · View at Scopus
  38. L. M. Fedigan, “Vertebrate predation in Cebus capucinus: meat eating in a neotropical monkey,” Folia Primatologica, vol. 54, no. 3-4, pp. 196–205, 1990. View at Google Scholar · View at Scopus
  39. J. Altmann, “Observational study of behavior: sampling methods,” Behaviour, vol. 49, no. 3-4, pp. 227–267, 1974. View at Google Scholar · View at Scopus
  40. A. D. Melin, L. M. Fedigan, H. C. Young, and S. Kawamura, “Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys?” Current Zoology, vol. 56, no. 3, pp. 300–312, 2010. View at Google Scholar · View at Scopus
  41. T. E. Rowell and B. J. Mitchell, “Comparison of seed dispersal by guenons in Kenya and capuchins in Panama,” Journal of Tropical Ecology, vol. 7, pp. 269–274, 1991. View at Google Scholar
  42. A. D. Melin, Polymorphic Colour Vision and Foraging in White-Faced Capuchins: insights from Field Research and Simulations of Monkey Vision, Department of Anthropology, University of Calgary, Calgary, Canada, 2011.
  43. M. C. Wendeln, J. R. Runkle, and E. K. V. Kalko, “Nutritional values of 14 fig species and bat feeding preferences in Panama,” Biotropica, vol. 32, no. 3, pp. 489–501, 2000. View at Google Scholar · View at Scopus
  44. C. Janson, “Aggresive competition and individual food consumption in wild brown capuchin monkeys (Cebus apella),” Behavioral Ecology and Sociobiology, vol. 18, no. 2, pp. 125–138, 1985. View at Publisher · View at Google Scholar · View at Scopus
  45. E. R. Vogel, S. B. Munch, and C. H. Janson, “Understanding escalated aggression over food resources in white-faced capuchin monkeys,” Animal Behaviour, vol. 74, no. 1, pp. 71–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. A. Phillips, “Resource patch size and flexible foraging in white-faced capuchins (Cebus capucinus),” International Journal of Primatology, vol. 16, no. 3, pp. 509–519, 1995. View at Google Scholar · View at Scopus
  47. A. Childers, Spatial ecology of Costa Rican white-faced capuchins: socioecological and cognitive implications, M.S. thesis, Department of Anthropology, Tulane University, New Orleans, La, USA, 2008.
  48. C. Chapman, “Patterns of foraging and range use by three species of neotropical primates,” Primates, vol. 29, no. 2, pp. 177–194, 1988. View at Publisher · View at Google Scholar · View at Scopus