Table of Contents Author Guidelines Submit a Manuscript
International Journal of Zoology
Volume 2012, Article ID 510920, 7 pages
http://dx.doi.org/10.1155/2012/510920
Research Article

Visual and Chemical Prey Cues as Complementary Predator Attractants in a Tropical Stream Fish Assemblage

Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, Canada H4B 1R6

Received 27 March 2012; Revised 25 April 2012; Accepted 30 April 2012

Academic Editor: Marie Herberstein

Copyright © 2012 Chris K. Elvidge and Grant E. Brown. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Danchin, L. A. Giraldeau, T. J. Valone, and R. H. Wagner, “Public information: from nosy neighbors to cultural evolution,” Science, vol. 305, no. 5683, pp. 487–491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. K. Elvidge, I. W. Ramnarine, J. G. J. Godin, and G. E. Brown, “Size-mediated response to public cues of predation risk in a tropical stream fish,” Journal of Fish Biology, vol. 77, no. 7, pp. 1632–1644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. W. Cronin, “The visual ecology of predator-prey interactions,” in Behavioural Ecology of Teleost Fishes, J. G. J. Godin, Ed., pp. 105–138, Oxford University Press, Oxford, UK, 1997. View at Google Scholar
  4. J. W. Kim, G. E. Brown, I. J. Dolinsek, N. N. Brodeur, A. O. H. C. Leduc, and J. W. A. Grant, “Combined effects of chemical and visual information in eliciting antipredator behaviour in juvenile Atlantic salmon Salmo salar,” Journal of Fish Biology, vol. 74, no. 6, pp. 1280–1290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. B. A. Hazlett and C. McLay, “Responses to predation risk: alternative strategies in the crab Heterozius rotundifrons,” Animal Behaviour, vol. 69, no. 4, pp. 967–972, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Hemmi, “Predator avoidance in fiddler crabs: 2. The visual cues,” Animal Behaviour, vol. 69, no. 3, pp. 615–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. B. D. Wisenden, J. Pogatshnik, D. Gibson, L. Bonacci, A. Schumacher, and A. Willett, “Sound the alarm: learned association of predation risk with novel auditory stimuli by fathead minnows (Pimephales promelas) and glowlight tetras (Hemigrammus erythrozonus) after single simultaneous pairings with conspecific chemical alarm cues,” Environmental Biology of Fishes, vol. 81, no. 2, pp. 141–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. C. O. Ferrari, B. D. Wisenden, and D. P. Chivers, “Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus,” Canadian Journal of Zoology, vol. 88, no. 7, pp. 698–724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. F. Smith, “Avoiding and deterring predators,” in Behavioural Ecology of Teleost Fishes, J. G. J. Godin, Ed., pp. 163–190, Oxford University Press, Oxford, UK, 1997. View at Google Scholar
  10. J. L. Golub, V. Vermette, and G. E. Brown, “Response to conspecific and heterospecific alarm cues by pumpkinseeds in simple and complex habitats: field verification of an ontogenetic shift,” Journal of Fish Biology, vol. 66, no. 4, pp. 1073–1081, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. E. Brown and R. J. F. Smith, “Conspecific skin extracts elicit antipredator responses in juvenile rainbow trout (Oncorhynchus mykiss),” Canadian Journal of Zoology, vol. 75, no. 11, pp. 1916–1922, 1997. View at Google Scholar · View at Scopus
  12. G. E. Brown, D. P. Chivers, and R. J. Smith, “Localized defecation by pike: a response to labelling by cyprinid alarm pheromone?” Behavioral Ecology and Sociobiology, vol. 36, no. 2, pp. 105–110, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. B. D. Wisenden, J. Karst, J. Miller, S. Miller, and L. Fuselier, “Anti-predator behaviour in response to conspecific chemical alarm cues in an esociform fish, Umbra limi (Kirtland 1840),” Environmental Biology of Fishes, vol. 82, no. 1, pp. 85–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. E. Brown and J. G. J. Godin, “Chemical alarm signals in wild Trinidadian guppies (Poecilia reticulata),” Canadian Journal of Zoology, vol. 77, no. 4, pp. 562–570, 1999. View at Google Scholar · View at Scopus
  15. R. J. F. Smith, “Alarm signals in fishes,” Reviews in Fish Biology and Fisheries, vol. 2, no. 1, pp. 33–63, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. M. C. Harvey and G. E. Brown, “Dine or dash?: ontogenetic shift in the response of yellow perch to conspecific alarm cues,” Environmental Biology of Fishes, vol. 70, no. 4, pp. 345–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. O. A. Popova, “The role of predaceous fish in ecosystems,” in Ecology of Freshwater Fish Production, S. D. Gerking, Ed., pp. 215–249, Blackwell Scientific, Oxford, UK, 1978. View at Google Scholar
  18. G. E. Brown, V. J. Leblanc, and L. E. Porter, “Ontogenetic changes in the response of largemouth bass (Micropterus salmoides, Centrarchidae, Perciformes) to heterospecific alarm pheromones,” Ethology, vol. 107, no. 5, pp. 401–414, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. B. D. Wisenden and T. A. Thiel, “Field verification of predator attraction to minnow alarm substance,” Journal of Chemical Ecology, vol. 28, no. 2, pp. 433–438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. L. Lima and L. M. Dill, “Behavioral decisions made under the risk of predation: a review and prospectus,” Canadian Journal of Zoology, vol. 68, no. 4, pp. 619–640, 1990. View at Google Scholar · View at Scopus
  21. A. Mathis, D. P. Chivers, and R. J. Smith, “Chemicl alarm signals: predator deterrents or predator attractants?” American Naturalist, vol. 145, no. 6, pp. 994–1005, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. O. M. Lonnstedt, M. I. McCormick, and D. P. Chivers, “Well-informed foraging: damage-released chemical cues of injured prey signal quality and size to predators,” Oecologia, vol. 168, no. 3, pp. 651–658, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. G. E. Brown, C. K. Elvidge, C. J. Macnaughton, I. Ramnarine, and J. G. J. Godin, “Cross-population responses to conspecific chemical alarm cues in wild Trinidadian guppies, Poecilia reticulata: evidence for local conservation of cue production,” Canadian Journal of Zoology, vol. 88, no. 2, pp. 139–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. P. Croft, L. J. Morrell, A. S. Wade et al., “Predation risk as a driving force for sexual segregation: a cross-population comparison,” American Naturalist, vol. 167, no. 6, pp. 867–878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. E. Magurran, Evolutionary Ecology: The Trinidadian Guppy, Oxford University Press, Oxford, UK, 2005.
  26. R. Froese and D. Pauly, “FishBase. 2011,” World Wide Web electronic publication, (01/2010)http://www.fishbase.org/.
  27. J. Krause and J. G. J. Godin, “Predator preferences for attacking particular prey group sizes: consequences for predator hunting success and prey predation risk,” Animal Behaviour, vol. 50, no. 2, pp. 465–473, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. K. E. Esteves, “Feeding ecology of three Astyanax species (Characidae, Tetragonopterinae) from a floodplain lake of Mogi-Guacu River, Parana River Basin, Brazil,” Environmental Biology of Fishes, vol. 46, no. 1, pp. 83–101, 1996. View at Google Scholar · View at Scopus
  29. B. H. Seghers, An analysis of geographic variation in the antipredator adaptations of the guppy, Poecilia reticulata [Ph.D. thesis], Department of Zoology, University of British Columbia, Vancouver BC, Canada, 1973.
  30. G. E. Brown, C. J. MacNaughton, C. K. Elvidge, I. Ramnarine, and J. G. J. Godin, “Provenance and threat-sensitive predator avoidance patterns in wild-caught Trinidadian guppies,” Behavioral Ecology and Sociobiology, vol. 63, no. 5, pp. 699–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Development Core Team, “nlme: Linear and Nonlinear Mixed Effects Models,” R package version 3.1-97, 2010.
  32. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2010.
  33. E. Paradis, J. Claude, and K. Strimmer, “APE: analyses of phylogenetics and evolution in R language,” Bioinformatics, vol. 20, no. 2, pp. 289–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. F. Cashner, “Are spotted bass (Micropterus punctulatus) attracted to Schreckstoff? A test of the predator attraction hypothesis,” Copeia, no. 3, pp. 592–598, 2004. View at Google Scholar · View at Scopus
  35. D. P. Chivers, G. E. Brown, and R. J. F. Smith, “The evolution of chemical alarm signals: attracting predators benefits alarm signal senders,” American Naturalist, vol. 148, no. 4, pp. 649–659, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. P. A. Nilsson and C. Bronmark, “Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on Northern pike piscivory,” Oikos, vol. 88, no. 3, pp. 539–546, 2000. View at Google Scholar · View at Scopus
  37. A. O. H. C. Leduc, J. M. Kelly, and G. E. Brown, “Detection of conspecific alarm cues by juvenile salmonids under neutral and weakly acidic conditions: laboratory and field tests,” Oecologia, vol. 139, no. 2, pp. 318–324, 2004. View at Publisher · View at Google Scholar · View at Scopus