Table of Contents Author Guidelines Submit a Manuscript
International Journal of Zoology
Volume 2013 (2013), Article ID 174523, 9 pages
Research Article

Toxicity Assessment of Buprofezin, Lufenuron, and Triflumuron to the Earthworm Aporrectodea caliginosa

1Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
2Department of Mammalian Toxicology, Central Agricultural Pesticides Laboratory (CAPL), Agriculture Research Center, Ministry of Agriculture, El-Sabahia, Alexandria, Egypt

Received 9 May 2013; Revised 15 August 2013; Accepted 31 August 2013

Academic Editor: Thomas Iliffe

Copyright © 2013 Mohamed E. I. Badawy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Earthworms are particularly important soil macroinvertebrates and are often used in assessing the general impact of pesticide pollution in soil. The present study was conducted in order to investigate the toxicity of three insect growth regulators (IGRs) buprofezin, lufenuron, and triflumuron, at different application rates and exposure times toward mature earthworms Aporrectodea caliginosa. The effects of these pesticides on the growth rate in relation to the activities of acetylcholinesterase (AChE) and glutathione S-transferase (GST) as biochemical indicators were evaluated to elucidate the mechanisms of action. Toxicity studies indicated that lufenuron was the most harmful pesticide to mature earthworms, followed in descending order by buprofezin and triflumuron. A reduction in growth rate in all pesticide-treated worms was dose-dependent over the 28-day exposure period, which was accompanied by a decrease in AChE and GST activities. Relationships between growth rate, AChE, and GST provided strong evidence for the involvement of pesticidal contamination in the biochemical changes in earthworms, which can be used as a bioindicator of soil contamination by pesticides.