Table of Contents Author Guidelines Submit a Manuscript
Interdisciplinary Perspectives on Infectious Diseases
Volume 2009 (2009), Article ID 278246, 15 pages
http://dx.doi.org/10.1155/2009/278246
Review Article

Diagnosis of Parasitic Diseases: Old and New Approaches

National Reference Centre for Parasitology, McGill University Centre for Tropical Diseases, Montreal General Hospital, 1650 Cedar Avenue R3-137, Montreal, QC, Canada H3G 1A4

Received 31 May 2009; Accepted 29 August 2009

Academic Editor: Herbert B. Tanowitz

Copyright © 2009 Momar Ndao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Hancock and V. C. W. Tsang, “Development and optimization of the FAST-ELISA for detecting antibodies to Schistosoma mansoni,” Journal of Immunological Methods, vol. 92, no. 2, pp. 167–176, 1986. View at Google Scholar · View at Scopus
  2. M. G. Pappas, R. Hajkowski, and W. T. Hockmeyer, “Dot enzyme-linked immunosorbent assay (Dot-ELISA): a micro technique for the rapid diagnosis of visceral leishmaniasis,” Journal of Immunological Methods, vol. 64, no. 1-2, pp. 205–214, 1983. View at Google Scholar · View at Scopus
  3. M. G. Pappas, “Recent applications of the Dot-ELISA in immunoparasitology,” Veterinary Parasitology, vol. 29, no. 2-3, pp. 105–129, 1988. View at Google Scholar · View at Scopus
  4. S. E. Shokoples, M. Ndao, K. Kowalewska-Grochowska, and S. K. Yanow, “Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections,” Journal of Clinical Microbiology, vol. 47, no. 4, pp. 975–980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. D. Burbelo, R. Goldman, and T. L. Mattson, “A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins,” BMC Biotechnology, vol. 5, article 22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. M. Parida, S. Sannarangaiah, P. K. Dash, P. V. L. Rao, and K. Morita, “Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases,” Reviews in Medical Virology, vol. 18, no. 6, pp. 407–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. L. Muldrew, “Molecular diagnostics of infectious diseases,” Current Opinion in Pediatrics, vol. 21, no. 1, pp. 102–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. B. D. Tait, F. Hudson, L. Cantwell et al., “Review article: luminex technology for HLA antibody detection in organ transplantation,” Nephrology, vol. 14, no. 2, pp. 247–254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Ndao, N. Kelly, D. Normandin et al., “Trypanosoma cruzi infection of squirrel monkeys: comparison of blood smear examination, commercial enzyme-linked immunosorbent assay, and polymerase chain reaction analysis as screening tests for evaluation of monkey-related injuries,” Comparative Medicine, vol. 50, no. 6, pp. 658–665, 2000. View at Google Scholar · View at Scopus
  10. G. R. Healy and T. K. Ruebush II, “Morphology of Babesia microti in human blood smears,” American Journal of Clinical Pathology, vol. 73, no. 1, pp. 107–109, 1980. View at Google Scholar · View at Scopus
  11. H. B. Tanowitz, L. V. Kirchhoff, D. Simon, S. A. Morris, L. M. Weiss, and M. Wittner, “Chagas' disease,” Clinical Microbiology Reviews, vol. 5, no. 4, pp. 400–419, 1992. View at Google Scholar · View at Scopus
  12. B. L. Herwaldt, “Leishmaniasis,” The Lancet, vol. 354, no. 9185, pp. 1191–1199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Duffy and M. Fried, “Malaria: new diagnostics for an old problem,” The American Journal of Tropical Medicine and Hygiene, vol. 73, no. 3, pp. 482–483, 2005. View at Google Scholar · View at Scopus
  14. W. D. Melrose, D. D. Durrheim, and G. W. Burgess, “Update on immunological tests for lymphatic filariasis,” Trends in Parasitology, vol. 20, no. 6, pp. 255–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Cobo, L. Aliaga, P. Talavera, and A. Concha, “The histological spectrum of non-granulomatous localized mucosal leishmaniasis caused by Leishmania infantum,” Annals of Tropical Medicine and Parasitology, vol. 101, no. 8, pp. 689–694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. P. Ferguson, W. M. Hutchison, and E. Pettersen, “Tissue cyst rupture in mice chronically infected with Toxoplasma gondii. An immunocytochemical and ultrastructural study,” Parasitology Research, vol. 75, no. 8, pp. 599–603, 1989. View at Google Scholar · View at Scopus
  17. T. A. Sims, J. Hay, and I. C. Talbot, “An electron microscope and immunohistochemical study of the intracellular location of Toxoplasma tissue cysts within the brains of mice with congenital toxoplasmosis,” British Journal of Experimental Pathology, vol. 70, no. 3, pp. 317–325, 1989. View at Google Scholar · View at Scopus
  18. F. Chappuis, S. Rijal, A. Soto, J. Menten, and M. Boelaert, “A meta-analysis of the diagnostic performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis,” British Medical Journal, vol. 333, no. 7571, pp. 723–726, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Ozensoy, Y. Ozbel, N. Turgay et al., “Serodiagnosis and epidemiology of visceral leishmaniasis in Turkey,” The American Journal of Tropical Medicine and Hygiene, vol. 59, no. 3, pp. 363–369, 1998. View at Google Scholar · View at Scopus
  20. I. Cruz, C. Chicharro, J. Nieto et al., “Comparison of new diagnostic tools for management of pediatric Mediterranean visceral leishmaniasis,” Journal of Clinical Microbiology, vol. 44, no. 7, pp. 2343–2347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Croft, C. J. Jackson, H. M. Friend, and E. J. Minton, “African trypanosomiasis in a British soldier,” Journal of the Royal Army Medical Corps, vol. 152, no. 3, pp. 156–160, 2006. View at Google Scholar · View at Scopus
  22. T. S. Murray and M. Cappello, “The molecular diagnosis of parasitic diseases,” Pediatric Infectious Disease Journal, vol. 27, no. 2, pp. 163–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Chappuis, L. Loutan, P. Simarro, V. Lejon, and P. Buscher, “Options for field diagnosis of human African trypanosomiasis,” Clinical Microbiology Reviews, vol. 18, no. 1, pp. 133–146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Lejon, P. Buscher, E. Magnus, A. Moons, I. Wouters, and N. Van Meirvenne, “A semi-quantitative ELISA for detection of Trypanosoma brucei gambiense specific antibodies in serum and cerebrospinal fluid of sleeping sickness patients,” Acta Tropica, vol. 69, no. 2, pp. 151–164, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Lejon, J. Kwete, and P. Buscher, “Short communication: towards saliva-based screening for sleeping sickness?” Tropical Medicine and International Health, vol. 8, no. 7, pp. 585–588, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. C. C. Loa, M. E. Adelson, E. Mordechai, I. Raphaelli, and R. C. Tilton, “Serological diagnosis of human babesiosis by IgG enzyme-linked immunosorbent assay,” Current Microbiology, vol. 49, no. 6, pp. 385–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Nakazawa, D. S. Rosa, V. R. A. Pereira et al., “Excretory-secretory antigens of Trypanosoma cruzi are potentially useful for serodiagnosis of chronic Chagas' disease,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 5, pp. 1024–1027, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Berrizbeitia, M. Ndao, J. Bubis et al., “Purified excreted-secreted antigens from trypanosoma cruzi trypomastigotes as tools for diagnosis of Chagas' disease,” Journal of Clinical Microbiology, vol. 44, no. 2, pp. 291–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. E. S. Umezawa, S. F. Bastos, J. R. Coura et al., “An improved serodiagnostic test for Chagas' disease employing a mixture of Trypanosoma cruzi recombinant antigens,” Transfusion, vol. 43, no. 1, pp. 91–97, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. F. da Silveira, E. S. Umezawa, and A. O. Luquetti, “Chagas disease: recombinant Trypanosoma cruzi antigens for serological diagnosis,” Trends in Parasitology, vol. 17, no. 6, pp. 286–291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Beghetto, W. Buffolano, A. Spadoni et al., “Use of an immunoglobulin G avidity assay based on recombinant antigens for diagnosis of primary Toxoplasma gondii infection during pregnancy,” Journal of Clinical Microbiology, vol. 41, no. 12, pp. 5414–5418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. G. H. Campbell, S. B. Aley, W. R. Ballou et al., “Use of synthetic and recombinant peptides in the study of host-parasite interactions in the malarias,” The American Journal of Tropical Medicine and Hygiene, vol. 37, no. 3, pp. 428–444, 1987. View at Google Scholar · View at Scopus
  33. M. Salcedo, L. Barreto, M. Rojas, R. Moya, J. Cote, and M. E. Patarroyo, “Studies on the humoral immune response to a synthetic vaccine against Plasmodium falciparum malaria,” Clinical and Experimental Immunology, vol. 84, no. 1, pp. 122–128, 1991. View at Google Scholar · View at Scopus
  34. B. Courtioux, S. Bisser, P. M'Belesso et al., “Dot enzyme-linked immunosorbent assay for more reliable staging of patients with human African trypanosomiasis,” Journal of Clinical Microbiology, vol. 43, no. 9, pp. 4789–4795, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. F. G. Araujo, “A method for demonstration of antibodies to Trypanosoma cruzi by using antigen-coated nitrocellulose paper strips,” The American Journal of Tropical Medicine and Hygiene, vol. 34, no. 2, pp. 242–245, 1985. View at Google Scholar · View at Scopus
  36. L. V. Kirchhoff, A. A. Gam, R. A. Gusmao, R. S. Goldsmith, J. M. Rezende, and A. Rassi, “Increased specificity of serodiagnosis of Chagas' disease by detection of antibody to the 72- and 90-kilodalton glycoproteins of Trypanosoma cruzi,” Journal of Infectious Diseases, vol. 155, no. 3, pp. 561–564, 1987. View at Google Scholar · View at Scopus
  37. D. A. Leiby, S. Wendel, D. T. Takaoka, R. M. Fachini, L. C. Oliveira, and M. A. Tibbals, “Serologic testing for Trypanosoma cruzi: comparison of radioimmunoprecipitation assay with commercially available indirect immunofluorescence assay, indirect hemagglutination assay, and enzyme-linked immunosorbent assay kits,” Journal of Clinical Microbiology, vol. 38, no. 2, pp. 639–642, 2000. View at Google Scholar · View at Scopus
  38. E. Magnus, T. Vervoort, and N. Van Meirvenne, “A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T. B. gambiense trypanosomiasis,” Annales de la Société Belge de Médecine Tropicale, vol. 58, no. 3, pp. 169–176, 1978. View at Google Scholar · View at Scopus
  39. F. Noireau, J. L. Lemesre, M. Y. Nzoukoudi, M. T. Louembet, J. P. Gouteux, and J. L. Frezil, “Serodiagnosis of sleeping sickness in the Republic of the Congo: comparison of indirect immunofluorescent antibody test and card agglutination test,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 82, no. 2, pp. 237–240, 1988. View at Google Scholar · View at Scopus
  40. P. J. Krause, R. Ryan, S. Telford III, D. Persing, and A. Spielman, “Efficacy of immunoglobulin M serodiagnostic test for rapid diagnosis of acute babesiosis,” Journal of Clinical Microbiology, vol. 34, no. 8, pp. 2014–2016, 1996. View at Google Scholar · View at Scopus
  41. P. J. Krause, S. R. Telford III, R. Ryan et al., “Diagnosis of babesiosis: evaluation of a serologic test for the detection of Babesia microti antibody,” Journal of Infectious Diseases, vol. 169, no. 4, pp. 923–926, 1994. View at Google Scholar · View at Scopus
  42. A. J. Sulzer and M. Wilson, “The fluorescent antibody test for malaria,” CRC Critical Reviews in Clinical Laboratory Sciences, vol. 2, no. 4, pp. 601–619, 1971. View at Google Scholar · View at Scopus
  43. M. E. Camargo, “Improved technique of indirect immunofluorescence for serological diagnosis of toxoplasmosis,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 12, pp. 117–118, 1964. View at Google Scholar
  44. E. S. Umezawa, M. S. Nascimento, and A. M. S. Stolf, “Enzyme-linked immunosorbent assay with Trypanosoma cruzi excreted-secreted antigens (TESA-ELISA) for serodiagnosis of acute and chronic Chagas' disease,” Diagnostic Microbiology and Infectious Disease, vol. 39, no. 3, pp. 169–176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Y. Cheng, C.-D. Chang, V. A. Salbilla et al., “Immunoblot assay using recombinant antigens as a supplemental test to confirm the presence of antibodies to Trypanosoma cruzi,” Clinical and Vaccine Immunology, vol. 14, no. 4, pp. 355–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Rilling, K. Dietz, D. Krczal, F. Knotek, and G. Enders, “Evaluation of a commercial IgG/IgM Western blot assay for early postnatal diagnosis of congenital toxoplasmosis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 22, no. 3, pp. 174–180, 2003. View at Google Scholar · View at Scopus
  47. C.-D. Chang, K. Y. Cheng, L. X. Jiang et al., “Evaluation of a prototype Trypanosoma cruzi antibody assay with recombinant antigens on a fully automated chemiluminescence analyzer for blood donor screening,” Transfusion, vol. 46, no. 10, pp. 1737–1744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. O. Luquetti, C. Ponce, E. Ponce et al., “Chagas' disease diagnosis: a multicentric evaluation of Chagas Stat-Pak, a rapid immunochromatographic assay with recombinant proteins of Trypanosoma cruzi,” Diagnostic Microbiology and Infectious Disease, vol. 46, no. 4, pp. 265–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Drakeley and H. Reyburn, “Out with the old, in with the new: the utility of rapid diagnostic tests for malaria diagnosis in Africa,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 103, no. 4, pp. 333–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. P. J. Krause, S. Telford III, A. Spielman et al., “Comparison of PCR with blood smear and inoculation of small animals for diagnosis of Babesia microti parasitemia,” Journal of Clinical Microbiology, vol. 34, no. 11, pp. 2791–2794, 1996. View at Google Scholar · View at Scopus
  51. D. H. Persing, D. Mathiesen, W. F. Marshall et al., “Detection of Babesia microti by polymerase chain reaction,” Journal of Clinical Microbiology, vol. 30, no. 8, pp. 2097–2103, 1992. View at Google Scholar · View at Scopus
  52. D. R. Moser, L. V. Kirchhoff, and J. E. Donelson, “Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction,” Journal of Clinical Microbiology, vol. 27, no. 7, pp. 1477–1482, 1989. View at Google Scholar · View at Scopus
  53. R. Gutierrez, V. M. Angulo, Z. Tarazona, C. Britto, and O. Fernandes, “Comparison of four serological tests for the diagnosis of Chagas disease in a Colombian endemic area,” Parasitology, vol. 129, no. 4, pp. 439–444, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Diez, L. Favaloro, A. Bertolotti et al., “Usefulness of PCR strategies for early diagnosis of Chagas' disease reactivation and treatment follow-up in heart transplantation,” American Journal of Transplantation, vol. 7, no. 6, pp. 1633–1640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Singh, A. Dey, and R. Sivakumar, “Applications of molecular methods for Leishmania control,” Expert Review of Molecular Diagnostics, vol. 5, no. 2, pp. 251–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. L. K. Erdman and K. C. Kain, “Molecular diagnostic and surveillance tools for global malaria control,” Travel Medicine and Infectious Disease, vol. 6, no. 1-2, pp. 82–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. P. V. Vidigal, D. V. Santos, F. C. Castro, J. C. Couto, R. W. Vitor, and G. Brasileiro Filho, “Prenatal toxoplasmosis diagnosis from amniotic fluid by PCR,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 35, no. 1, pp. 1–6, 2002. View at Google Scholar · View at Scopus
  58. M. H. Bessieres, A. Berrebi, S. Cassaing et al., “Diagnosis of congenital toxoplasmosis: prenatal and neonatal evaluation of methods used in Toulouse University Hospital and incidence of congenital toxoplasmosis,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 2, pp. 389–392, 2009. View at Google Scholar · View at Scopus
  59. S. Becker, J. R. Franco, P. P. Simarro, A. Stich, P. M. Abel, and D. Steverding, “Real-time PCR for detection of Trypanosoma brucei in human blood samples,” Diagnostic Microbiology and Infectious Disease, vol. 50, no. 3, pp. 193–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Bretagne, R. Durand, M. Olivi et al., “Real-time PCR as a new tool for quantifying Leishmania infantum in liver in infected mice,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 4, pp. 828–831, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Mary, F. Faraut, L. Lascombe, and H. Dumon, “Quantification of Leishmania infantum DNA by a real-time PCR assay with high sensitivity,” Journal of Clinical Microbiology, vol. 42, no. 11, pp. 5249–5255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Rolao, S. Cortes, O. R. Rodrigues, and L. Campino, “Quantification of Leishmania infantum parasites in tissue biopsies by real-time polymerase chain reaction and polymerase chain reaction-enzyme-linked immunosorbent assay,” Journal of Parasitology, vol. 90, no. 5, pp. 1150–1154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Romand, M. Chosson, J. Franck et al., “Usefulness of quantitative polymerase chain reaction in amniotic fluid as early prognostic marker of fetal infection with Toxoplasma gondii,” American Journal of Obstetrics and Gynecology, vol. 190, no. 3, pp. 797–802, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. W. F. van der Meide, G. J. Schoone, W. R. Faber et al., “Quantitative nucleic acid sequence-based assay as a new molecular tool for detection and quantification of Leishmania parasites in skin biopsy samples,” Journal of Clinical Microbiology, vol. 43, no. 11, pp. 5560–5566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. G. J. Schoone, L. Oskam, N. C. M. Kroon, H. D. F. H. Schallig, and S. A. Omar, “Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification,” Journal of Clinical Microbiology, vol. 38, no. 11, pp. 4072–4075, 2000. View at Google Scholar · View at Scopus
  66. S. A. Omar, P. F. Mens, G. J. Schoone et al., “Plasmodium falciparum: evaluation of a quantitative nucleic acid sequence-based amplification assay to predict the outcome of sulfadoxine-pyrimethamine treatment of uncomplicated malaria,” Experimental Parasitology, vol. 110, no. 1, pp. 73–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. P. F. Mens, G. J. Schoone, P. A. Kager, and H. D. F. H. Schallig, “Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification,” Malaria Journal, vol. 5, article 80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. K. Njiru, A. S. J. Mikosza, E. Matovu et al., “African trypanosomiasis: sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA,” International Journal for Parasitology, vol. 38, no. 5, pp. 589–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. O. M. M. Thekisoe, N. Kuboki, A. Nambota et al., “Species-specific loop-mediated isothermal amplification (LAMP) for diagnosis of trypanosomosis,” Acta Tropica, vol. 102, no. 3, pp. 182–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. L. L. M. Poon, B. W. Y. Wong, E. H. T. Ma et al., “Sensitive and inexpensive molecular test for falciparum malaria: defecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification,” Clinical Chemistry, vol. 52, no. 2, pp. 303–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. E.-T. Han, R. Watanabe, J. Sattabongkot et al., “Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis,” Journal of Clinical Microbiology, vol. 45, no. 8, pp. 2521–2528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. D. H. Paris, M. Imwong, A. M. Faiz et al., “Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria,” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 5, pp. 972–976, 2007. View at Google Scholar · View at Scopus
  73. H. Aonuma, M. Suzuki, H. Iseki et al., “Rapid identification of Plasmodium-carrying mosquitoes using loop-mediated isothermal amplification,” Biochemical and Biophysical Research Communications, vol. 376, no. 4, pp. 671–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Yamamura, K. Makimura, and Y. Ota, “Evaluation of a new rapid molecular diagnostic system for Plasmodium falciparum combined with DNA filter paper, loop-mediated isothermal amplification, and melting curve analysis,” Japanese Journal of Infectious Diseases, vol. 62, no. 1, pp. 20–25, 2009. View at Google Scholar · View at Scopus
  75. D. T. McNamara, L. J. Kasehagen, B. T. Grimberg, J. Cole-Tobian, W. E. Collins, and P. A. Zimmerman, “Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay,” The American Journal of Tropical Medicine and Hygiene, vol. 74, no. 3, pp. 413–421, 2006. View at Google Scholar · View at Scopus
  76. S. De Doncker, V. Hutse, S. Abdellati et al., “A new PCR-ELISA for diagnosis of visceral leishmaniasis in blood of HIV-negative subjects,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 99, no. 1, pp. 25–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Humar, M. A. Harrington, and K. C. Kain, “Evaluation of a non-isotopic polymerase chain reaction-based assay to detect and predict treatment failure of Plasmodium vivax malaria in travellers,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 91, no. 4, pp. 406–409, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. K. J. Y. Zhong and K. C. Kain, “Evaluation of a colorimetric PCR-based assay to diagnose Plasmodium falciparum malaria in travelers,” Journal of Clinical Microbiology, vol. 37, no. 2, pp. 339–341, 1999. View at Google Scholar · View at Scopus
  79. A. Calderaro, G. Piccolo, C. Zuelli et al., “Evaluation of a new plate hybridization assay for the laboratory diagnosis of imported malaria in Italy,” New Microbiologica, vol. 27, no. 2, pp. 163–171, 2004. View at Google Scholar · View at Scopus
  80. S. Deborggraeve, F. Claes, T. Laurent et al., “Molecular dipstick test for diagnosis of sleeping sickness,” Journal of Clinical Microbiology, vol. 44, no. 8, pp. 2884–2889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Reithinger and J.-C. Dujardin, “Molecular diagnosis of leishmaniasis: current status and future applications,” Journal of Clinical Microbiology, vol. 45, no. 1, pp. 21–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Agranoff, A. Stich, P. Abel, and S. Krishna, “Proteomic fingerprinting for the diagnosis of human African trypanosomiasis,” Trends in Parasitology, vol. 21, no. 4, pp. 154–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. M. C. Papadopoulos, P. M. Abel, D. Agranoff et al., “A novel and accurate diagnostic test for human African trypanosomiasis,” The Lancet, vol. 363, no. 9418, pp. 1358–1363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Nyunt, J. Pisciotta, A. B. Feldman et al., “Detection of Plasmodium falciparum in pregnancy by laser desorption mass spectrometry,” The American Journal of Tropical Medicine and Hygiene, vol. 73, no. 3, pp. 485–490, 2005. View at Google Scholar · View at Scopus
  85. P. A. Demirev, A. B. Feldman, D. Kongkasuriyachai, P. Scholl, D. Sullivan Jr., and N. Kumar, “Detection of malaria parasites in blood by laser desorption mass spectrometry,” Analytical Chemistry, vol. 74, no. 14, pp. 3262–3266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. P. F. Scholl, D. Kongkasuriyachai, P. A. Demirev et al., “Rapid detection of malaria infection in vivo by laser desorption mass spectrometry,” The American Journal of Tropical Medicine and Hygiene, vol. 71, no. 5, pp. 546–551, 2004. View at Google Scholar · View at Scopus
  87. R. J. ten Hove, M. van Esbroeck, T. Vervoort, J. van den Ende, L. van Lieshout, and J. J. Verweij, “Molecular diagnostics of intestinal parasites in returning travellers,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 9, pp. 1045–1053, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Cordova, L. Reategui, and J. R. Espinoza, “Immunodiagnosis of human fascioliasis with Fasciola hepatica cysteine proteinases,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 93, no. 1, pp. 54–57, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Katz, A. Chaves, and J. Pellegrino, “A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 14, no. 6, pp. 397–400, 1972. View at Google Scholar · View at Scopus
  90. W. Zhang and D. P. McManus, “Recent advances in the immunology and diagnosis of echinococcosis,” FEMS Immunology and Medical Microbiology, vol. 47, no. 1, pp. 24–41, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Chandrashekar, K. C. Curtis, R. M. Ramzy, F. Liftis, B.-W. Li, and G. J. Weil, “Molecular cloning of Brugia malayi antigens for diagnosis of lymphatic filariasis,” Molecular and Biochemical Parasitology, vol. 64, no. 2, pp. 261–271, 1994. View at Publisher · View at Google Scholar · View at Scopus
  92. A. A. Siddiqui and S. L. Berk, “Diagnosis of Strongyloides stercoralis infection,” Clinical Infectious Diseases, vol. 33, no. 7, pp. 1040–1047, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Weitzel, S. Dittrich, I. Mohl, E. Adusu, and T. Jelinek, “Evaluation of seven commercial antigen detection tests for Giardia and Cryptosporidium in stool samples,” Clinical Microbiology and Infection, vol. 12, no. 7, pp. 656–659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. M. T. Katanik, S. K. Schneider, J. E. Rosenblatt, G. S. Hall, and G. W. Procop, “Evaluation of ColorPAC Giardia/Cryptosporidium rapid assay and ProSpect Giardia/Cryptosporidium microplate assay for detection of Giardia and Cryptosporidium in fecal specimens,” Journal of Clinical Microbiology, vol. 39, no. 12, pp. 4523–4525, 2001. View at Publisher · View at Google Scholar · View at Scopus
  95. J. R. Espinoza, V. Maco, L. Marcos et al., “Evaluation of FAS2-ELISA for the serological detection of Fasciola hepatica infection in humans,” The American Journal of Tropical Medicine and Hygiene, vol. 76, no. 5, pp. 977–982, 2007. View at Google Scholar · View at Scopus
  96. A. Rabello, “Diagnosing schistosomiasis,” Memorias do Instituto Oswaldo Cruz, vol. 92, no. 5, pp. 669–676, 1997. View at Google Scholar · View at Scopus
  97. J. Pardo, J. L. P. Arellano, R. Lopez-Velez, C. Carranza, M. Cordero, and A. Muro, “Application of an ELISA test using Schistosoma bovis adult worm antigens in travellers and immigrants from a schistosomiasis endemic area and its correlation with clinical findings,” Scandinavian Journal of Infectious Diseases, vol. 39, no. 5, pp. 435–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Rosas, J. Sotelo, and D. Nieto, “ELISA in the diagnosis of neurocysticercosis,” Archives of Neurology, vol. 43, no. 4, pp. 353–356, 1986. View at Google Scholar · View at Scopus
  99. J. C. Allan, G. Avila, J. Garcia Noval, A. Flisser, and P. S. Craig, “Immunodiagnosis of taeniasis by coproantigen detection,” Parasitology, vol. 101, no. 3, pp. 473–477, 1990. View at Google Scholar · View at Scopus
  100. H. H. Garcia, R. M. E. Parkhouse, R. H. Gilman et al., “Serum antigen detection in the diagnosis, treatment, and follow-up of neurocysticercosis patients,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 94, no. 6, pp. 673–676, 2000. View at Google Scholar · View at Scopus
  101. E. C. Bueno, C. M. Scheel, A. J. Vaz et al., “Application of synthetic 8-kD and recombinant GP50 antigens in the diagnosis of neurocysticercosis by enzyme-linked immunosorbent assay,” The American Journal of Tropical Medicine and Hygiene, vol. 72, no. 3, pp. 278–283, 2005. View at Google Scholar · View at Scopus
  102. B. Gottstein, “Molecular and immunological diagnosis of echinococcosis,” Clinical Microbiology Reviews, vol. 5, no. 3, pp. 248–261, 1992. View at Google Scholar · View at Scopus
  103. V. G. Virginio, A. Hernandez, M. B. Rott et al., “A set of recombinant antigens from Echinococcus granulosus with potential for use in the immunodiagnosis of human cystic hydatid disease,” Clinical and Experimental Immunology, vol. 132, no. 2, pp. 309–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. A. M. Qaqish, M. A. Nasrieh, K. M. Al-Qaoud, P. S. Craig, and S. K. Abdel-Hafez, “The seroprevalences of cystic echinococcosis, and the associated risk factors, in rural-agricultural, bedouin and semi-bedouin communities in Jordan,” Annals of Tropical Medicine and Parasitology, vol. 97, no. 5, pp. 511–520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Hernández, G. Cardozo, S. Dematteis et al., “Cystic echinococcosis: analysis of the serological profile related to the risk factors in individuals without ultrasound liver changes living in an endemic area of Tacuarembó, Uruguay,” Parasitology, vol. 130, no. 4, pp. 455–460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. D. Carmena, A. Benito, and E. Eraso, “The immunodiagnosis of Echinococcus multilocularis infection,” Clinical Microbiology and Infection, vol. 13, no. 5, pp. 460–475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. R. M. Genta, “Predictive value of an enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of strongyloidiasis,” American Journal of Clinical Pathology, vol. 89, no. 3, pp. 391–394, 1988. View at Google Scholar · View at Scopus
  108. D. J. Conway, N. S. Atkins, J. E. Lillywhite et al., “Immunodiagnosis of Strongyloides stercoralis infection: a method for increasing the specificity of the indirect ELISA,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 87, no. 2, pp. 173–176, 1993. View at Publisher · View at Google Scholar · View at Scopus
  109. F. M. de Paula, E. de Castro, M. Gonçalves-Pires, M. Marçal, D. M. Campos, and J. M. Costa-Cruz, “Parasitological and immunological diagnoses of strongyloidiasis in immunocompromised and non-immunocompromised children at Uberlândia, State of Minas Gerais, Brazil,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 42, no. 1, pp. 51–55, 2000. View at Google Scholar · View at Scopus
  110. M. R. Loutfy, M. Wilson, J. S. Keystone, and K. C. Kain, “Serology and eosinophil count in the diagnosis and management of strongyloidiasis in a non-endemic area,” The American Journal of Tropical Medicine and Hygiene, vol. 66, no. 6, pp. 749–752, 2002. View at Google Scholar · View at Scopus
  111. S. Lim, K. Katz, S. Krajden, M. Fuksa, J. S. Keystone, and K. C. Kain, “Complicated and fatal Strongyloides infection in Canadians: risk factors, diagnosis and management,” Canadian Medical Association Journal, vol. 171, no. 5, pp. 479–484, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. G. V. Hillyer, M. S. de Galanes, J. Rodriguez-Perez et al., “Use of the FalconTM assay screening test-enzyme-linked immunosorbent assay (FAST-ELISA) and the enzyme-linked immunoelectrotransfer blot (EITB) to determine the prevalence of human fascioliasis in the Bolivian Altiplano,” The American Journal of Tropical Medicine and Hygiene, vol. 46, no. 5, pp. 603–609, 1992. View at Google Scholar · View at Scopus
  113. N. Kumar, S. Ghosh, and S. C. Gupta, “Early detection of Fasciola gigantica infection in buffaloes by enzyme-linked immunosorbent assay and dot enzyme-linked immunosorbent assay,” Parasitology Research, vol. 103, no. 1, pp. 141–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. G. L. Zimmerman, M. J. Nelson, and C. R. B. Clark, “Diagnosis of ovine fascioliasis by a dot enzyme-linked immunosorbent assay: a rapid microdiagnostic technique,” American Journal of Veterinary Research, vol. 46, no. 7, pp. 1513–1515, 1985. View at Google Scholar · View at Scopus
  115. A. L. T. Rabbello, M. M. A. Garcia, E. Dias Neto, R. S. Rocha, and N. Katz, “Dot-dye-immunoassay and dot-ELlSA for the serological differentiation of acute and chronic schistosomiasis mansoni using keyhole limpet haemocyanin as antigen,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 87, no. 3, pp. 279–281, 1993. View at Publisher · View at Google Scholar · View at Scopus
  116. M. G. Pappas, P. M. Schantz, L. T. Cannon Sr., and S. P. Wahlquist, “Dot-ELISA for the rapid serodiagnosis of human hydatid disease,” Diagnostic Immunology, vol. 4, no. 6, pp. 271–276, 1986. View at Google Scholar · View at Scopus
  117. M. M. Al-Sherbiny, A.-A. M. M. K. Farrag, M. H. Fayad, M. K. Makled, G. M. Tawfeek, and N. M. S. Ali, “Application and assessment of a dipstick assay in the diagnosis of hydatidosis and trichinosis,” Parasitology Research, vol. 93, no. 2, pp. 87–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. P. J. Lammie, G. Weil, R. Noordin et al., “Recombinant antigen-based antibody assays for the diagnosis and surveillance of lymphatic filariasis—a multicenter trial,” Filaria Journal, vol. 3, no. 1, article 9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Jamail, K. Andrew, D. Junaidi, A. K. Krishnan, M. Faizal, and N. Rahmah, “Field validation of sensitivity and specificity of rapid test for detection of Brugia malayi infection,” Tropical Medicine and International Health, vol. 10, no. 1, pp. 99–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. N. Rahmah, S. Taniawati, R. K. Shenoy et al., “Specificity and sensitivity of a rapid dipstick test (Brugia Rapid) in the detection of Brugia malayi infection,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 6, pp. 601–604, 2001. View at Publisher · View at Google Scholar · View at Scopus
  121. T. van Gool, H. Vetter, T. Vervoort, M. J. Doenhoff, J. Wetsteyn, and D. Overbosch, “Serodiagnosis of imported schistosomiasis by a combination of a commercial indirect hemagglutination test with Schistosoma mansoni adult worm antigens and an enzyme-linked immunosorbent assay with S. mansoni egg antigens,” Journal of Clinical Microbiology, vol. 40, no. 9, pp. 3432–3437, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. M. A. Nasrieh and S. K. Abdel-Hafez, “Echinococcus granulosus in Jordan: assessment of various antigenic preparations for use in the serodiagnosis of surgically confirmed cases using enzyme immuno assays and the indirect haemagglutination test,” Diagnostic Microbiology and Infectious Disease, vol. 48, no. 2, pp. 117–123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. G. J. Weil, P. J. Lammie, and N. Weiss, “The ICT filariasis test: a rapid-format antigen test for diagnosis of bancroftian filariasis,” Parasitology Today, vol. 13, no. 10, pp. 401–404, 1997. View at Publisher · View at Google Scholar · View at Scopus
  124. Y. Sato, H. Toma, S. Kiyuna, and Y. Shiroma, “Gelatin particle indirect agglutination test for mass examination for strongyloidiasis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 85, no. 4, pp. 515–518, 1991. View at Publisher · View at Google Scholar · View at Scopus
  125. L. S. Garcia and R. Y. Shimizu, “Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens,” Journal of Clinical Microbiology, vol. 35, no. 6, pp. 1526–1529, 1997. View at Google Scholar · View at Scopus
  126. L. S. Garcia, A. C. Shum, and D. A. Bruckner, “Evaluation of a new monoclonal antibody combination reagent for direct fluorescence detection of Giardia cysts and Cryptosporidium oocysts in human fecal specimens,” Journal of Clinical Microbiology, vol. 30, no. 12, pp. 3255–3257, 1992. View at Google Scholar · View at Scopus
  127. J. M. Costa-Cruz, C. B. Hullamah, M. R. Gonçalves-Pires, D. M. B. Campos, and M. A. Vieira, “Cryo-microtome sections of coproculture larvae of strongyloides stercoralis and strongyloides raft/as antigen sources for the immunodiagnosis of human strongyloidiasis,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 39, no. 6, pp. 313–317, 1997. View at Google Scholar · View at Scopus
  128. E. R. Machado, M. T. Ueta, M. R. Gonçalves-Pires, J. B. Alves de Oliveira, L. H. Faccioli, and J. M. Costa-Cruz, “Diagnosis of human strongyloidiasis using particulate antigen of two strains of Strongyloides venezuelensis in indirect immunofluorescence antibody test,” Experimental Parasitology, vol. 99, no. 1, pp. 52–55, 2001. View at Publisher · View at Google Scholar · View at Scopus
  129. M. M. Al-Sherbiny, A. M. Osman, K. Hancock, A. M. Deelder, and V. C. W. Tsang, “Application of immunodiagnostic assays: detection of antibodies and circulating antigens in human schistosomiasis and correlation with clinical findings,” The American Journal of Tropical Medicine and Hygiene, vol. 60, no. 6, pp. 960–966, 1999. View at Google Scholar · View at Scopus
  130. V. C. W. Tsang, J. A. Brand, and A. E. Boyer, “An enzyme-linked immunoelectrotransfer blot assay and glycoprotein antigens for diagnosing human cysticercosis (Taenia solium),” Journal of Infectious Diseases, vol. 159, no. 1, pp. 50–59, 1989. View at Google Scholar · View at Scopus
  131. P. P. Wilkins, J. C. Allan, M. Verastegui et al., “Development of a serologic assay to detect Taenia solium taeniasis,” The American Journal of Tropical Medicine and Hygiene, vol. 60, no. 2, pp. 199–204, 1999. View at Google Scholar · View at Scopus
  132. L. P. Silva, I. S. Da Costa Barcelos, A. B. Passos-Lima, F. S. Espindola, D. M. Barbosa Campos, and J. M. Costa-Cruz, “Western blotting using Strongyloides ratti antigen for the detection of IgG antibodies as confirmatory test in human strongyloidiasis,” Memorias do Instituto Oswaldo Cruz, vol. 98, no. 5, pp. 687–691, 2003. View at Google Scholar · View at Scopus
  133. P. D. Burbelo, R. Ramanathan, A. D. Klion, M. J. Iadarola, and T. B. Nutman, “Rapid, novel, specific, high-throughput assay for diagnosis of Loa loa infection,” Journal of Clinical Microbiology, vol. 46, no. 7, pp. 2298–2304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. R. Ramanathan, P. D. Burbelo, S. Groot, M. J. Iadarola, F. A. Neva, and T. B. Nutman, “A luciferase immunoprecipitation systems assay enhances the sensitivity and specificity of diagnosis of Strongyloides stercoralis infection,” Journal of Infectious Diseases, vol. 198, no. 3, pp. 444–451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. W. Johnson, N. J. Pieniazek, D. W. Griffin, L. Misener, and J. B. Rose, “Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples,” Applied and Environmental Microbiology, vol. 61, no. 11, pp. 3849–3855, 1995. View at Google Scholar · View at Scopus
  136. U. M. Morgan, C. C. Constantine, D. A. Forbes, and R. C. A. Thompson, “Differentiation between human and animal isolates of Cryptosporidium parvum using rDNA sequencing and direct PCR analysis,” Journal of Parasitology, vol. 83, no. 5, pp. 825–830, 1997. View at Publisher · View at Google Scholar · View at Scopus
  137. F. G. C. Abath, A. L. D. V. Gomes, F. L. Melo, C. S. Barbosa, and R. P. Werkhauser, “Molecular approaches for the detection of Schistosoma mansoni: possible applications in the detection of snail infection, monitoring of transmission sites, and diagnosis of human infection,” Memorias do Instituto Oswaldo Cruz, vol. 101, supplement 1, pp. 145–148, 2006. View at Google Scholar · View at Scopus
  138. L. A. Pontes, E. Dias-Neto, and A. Rabello, “Detection by polymerase chain reaction of Schistosoma mansoni DNA in human serum and feces,” The American Journal of Tropical Medicine and Hygiene, vol. 66, no. 2, pp. 157–162, 2002. View at Google Scholar · View at Scopus
  139. L. M. Gonzalez, E. Montero, S. Puente et al., “PCR tools for the differential diagnosis of Taenia saginata and Taenia solium taeniasis/cysticercosis from different geographical locations,” Diagnostic Microbiology and Infectious Disease, vol. 42, no. 4, pp. 243–249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. H. Yamasaki, M. Nakao, Y. Sako, K. Nakaya, M. O. Sato, and A. Ito, “Mitochondrial DNA diagnosis for taeniasis and cysticercosis,” Parasitology International, vol. 55, supplement 1, pp. S81–S85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. R. M. Ramzy, “Field application of PCR-based assays for monitoring Wuchereria bancrofti infection in Africa,” Annals of Tropical Medicine and Parasitology, vol. 96, supplement 2, pp. S55–S59, 2002. View at Google Scholar · View at Scopus
  142. M. Zhong, J. McCarthy, L. Bierwert et al., “A polymerase chain reaction assay for detection of the parasite Wuchereria bancrofti in human blood samples,” The American Journal of Tropical Medicine and Hygiene, vol. 54, no. 4, pp. 357–363, 1996. View at Google Scholar · View at Scopus
  143. S. A. Williams, L. Nicolas, M. Lizotte-Waniewski et al., “A polymerase chain reaction assay for the detection of Wuchereria bancrofti in blood samples from French Polynesia,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 90, no. 4, pp. 384–387, 1996. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Ramachandran, A. A. Gam, and F. A. Neva, “Molecular differences between several species of Strongyloides and comparison of selected isolates of S. stercoralis using a polymerase chain reaction-linked restriction fragment length polymorphism approach,” The American Journal of Tropical Medicine and Hygiene, vol. 56, no. 1, pp. 61–65, 1997. View at Google Scholar · View at Scopus
  145. J. R. Limor, A. A. Lal, and L. Xiao, “Detection and differentiation of Cryptosporidium parasites that are pathogenic for humans by real-time PCR,” Journal of Clinical Microbiology, vol. 40, no. 7, pp. 2335–2338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. R. ten Hove, T. Schuurman, M. Kooistra, L. Möller, L. van Lieshout, and J. J. Verweij, “Detection of diarrhoea-causing protozoa in general practice patients in The Netherlands by multiplex real-time PCR,” Clinical Microbiology and Infection, vol. 13, no. 10, pp. 1001–1007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. N. Jothikumar, A. J. da Silva, I. Moura, Y. Qvarnstrom, and V. R. Hill, “Detection and differentiation of Cryptosporidium hominis and Cryptosporidium parvum by dual TaqMan assays,” Journal of Medical Microbiology, vol. 57, no. 9, pp. 1099–1105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. R. J. ten Hove, J. J. Verweij, K. Vereecken, K. Polman, L. Dieye, and L. van Lieshout, “Multiplex real-time PCR for the detection and quantification of Schistosoma mansoni and S. haematobium infection in stool samples collected in northern Senegal,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 2, pp. 179–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. A. L. D. V. Gomes, F. L. Melo, R. P. Werkhauser, and F. G. C. Abath, “Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA,” Memorias do Instituto Oswaldo Cruz, vol. 101, supplement 1, pp. 133–136, 2006. View at Google Scholar · View at Scopus
  150. J. J. Verweij, M. Canales, K. Polman et al., “Molecular diagnosis of Strongyloides stercoralis in faecal samples using real-time PCR,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 103, no. 4, pp. 342–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. P. Karanis, O. Thekisoe, K. Kiouptsi, J. Ongerth, I. Igarashi, and N. Inoue, “Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of Cryptosporidium oocysts in fecal and water samples,” Applied and Environmental Microbiology, vol. 73, no. 17, pp. 5660–5662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. M. A. Bakheit, D. Torra, L. A. Palomino et al., “Sensitive and specific detection of Cryptosporidium species in PCR-negative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing,” Veterinary Parasitology, vol. 158, no. 1-2, pp. 11–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Nkouawa, Y. Sako, M. Nakao, K. Nakaya, and A. Ito, “Loop-mediated isothermal amplification method for differentiation and rapid detection of Taenia species,” Journal of Clinical Microbiology, vol. 47, no. 1, pp. 168–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. K. Bandyopadhyay, K. L. Kellar, I. Moura et al., “Rapid microsphere assay for identification of Cryptosporidium hominis and Cryptosporidium parvum in stool and environmental samples,” Journal of Clinical Microbiology, vol. 45, no. 9, pp. 2835–2840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. P. Fischer, X. Liu, M. Lizotte-Waniewski, I. H. Kamal, R. M. R. Ramzy, and S. A. Williams, “Development of a quantitative, competitive polymerase chain reaction-enzyme-linked immunosorbent assay for the detection of Wuchereria bancrofti DNA,” Parasitology Research, vol. 85, no. 3, pp. 176–183, 1999. View at Google Scholar · View at Scopus
  156. O. P. Akinwale, T. Laurent, P. Mertens et al., “Detection of schistosomes polymerase chain reaction amplified DNA by oligochromatographic dipstick,” Molecular and Biochemical Parasitology, vol. 160, no. 2, pp. 167–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. M.-C. Rioux, C. Carmona, D. Acosta et al., “Discovery and validation of serum biomarkers expressed over the first twelve weeks of Fasciola hepatica infection in sheep,” International Journal for Parasitology, vol. 38, no. 1, pp. 123–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. N. Deckers, P. Dorny, K. Kanobana et al., “Use of ProteinChip technology for identifying biomarkers of parasitic diseases: the example of porcine cysticercosis (Taenia solium),” Experimental Parasitology, vol. 120, no. 4, pp. 320–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. W. J. Carter, Z. Yan, N. D. Cassai, and G. S. Sidhu, “Detection of extracellular forms of babesia in the blood by electron microscopy: a diagnostic method for differentiation from Plasmodium falciparum,” Ultrastructural Pathology, vol. 27, no. 4, pp. 211–216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  160. S. E. Maddison, “The present status of serodiagnosis and seroepidemiology of schistosomiasis,” Diagnostic Microbiology and Infectious Disease, vol. 7, no. 2, pp. 93–105, 1987. View at Google Scholar · View at Scopus
  161. R. C. Ko and T. F. Ng, “Evaluation of excretory/secretory products of larval Taenia solium as diagnostic antigens for porcine and human cysticercosis,” Journal of Helminthology, vol. 72, no. 2, pp. 147–154, 1998. View at Google Scholar · View at Scopus
  162. A. Prasad, A. Nasir, and N. Singh, “Detection of anti-Haemonchus contortus antibodies in sheep by dot-ELISA with immunoaffinity purified fraction of ES antigen during prepatency,” Indian Journal of Experimental Biology, vol. 46, no. 2, pp. 94–99, 2008. View at Google Scholar · View at Scopus
  163. S. Kumar, R. Kumar, A. K. Gupta, and S. K. Dwivedi, “Passive transfer of Theileria equi antibodies to neonate foals of immune tolerant mares,” Veterinary Parasitology, vol. 151, no. 1, pp. 80–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. H. J. Carrasco, A. Torrellas, C. Garcia, M. Segovia, and M. D. Feliciangeli, “Risk of Trypanosoma cruzi I (Kinetoplastida: Trypanosomatidae) transmission by Panstrongylus geniculatus (Hemiptera: Reduviidae) in Caracas (Metropolitan District) and neighboring States, Venezuela,” International Journal for Parasitology, vol. 35, no. 13, pp. 1379–1384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  165. C. K. Murray, R. A. Gasser Jr., A. J. Magill, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clinical Microbiology Reviews, vol. 21, no. 1, pp. 97–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. A. D. C. Vexenat, J. M. Santana, and A. R. L. Teixeira, “Cross-reactivity of antibodies in human infections by the kinetoplastid protozoa Trypanosoma cruzi, Leishmania chagasi and Leishmania (Viannia) braziliensis,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 38, no. 3, pp. 177–185, 1996. View at Google Scholar · View at Scopus
  167. B. Singh, “Molecular methods for diagnosis and epidemiological studies of parasitic infections,” International Journal for Parasitology, vol. 27, no. 10, pp. 1135–1145, 1997. View at Publisher · View at Google Scholar · View at Scopus
  168. P. Moro and P. M. Schantz, “Echinococcosis: a review,” International Journal of Infectious Diseases, vol. 13, no. 2, pp. 125–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. P. Mens, N. Spieker, S. Omar, M. Heijnen, H. Schallig, and P. A. Kager, “Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania,” Tropical Medicine and International Health, vol. 12, no. 2, pp. 238–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  170. D. S. Zarlenga and J. Higgins, “PCR as a diagnostic and quantitative technique in veterinary parasitology,” Veterinary Parasitology, vol. 101, no. 3-4, pp. 215–230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  171. R. B. Gasser, “Molecular tools—advances, opportunities and prospects,” Veterinary Parasitology, vol. 136, no. 2, pp. 69–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. G. A. Farcas, R. Soeller, K. Zhong, A. Zahirieh, and K. C. Kain, “Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers,” Clinical Infectious Diseases, vol. 42, no. 5, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  173. S. Bretagne and J.-M. Costa, “Towards a nucleic acid-based diagnosis in clinical parasitology and mycology,” Clinica Chimica Acta, vol. 363, no. 1-2, pp. 221–228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  174. T. Notomi, H. Okayama, H. Masubuchi et al., “Loop-mediated isothermal amplification of DNA,” Nucleic Acids Research, vol. 28, no. 12, p. E63, 2000. View at Google Scholar
  175. M. Parida, G. Posadas, S. Inoue, F. Hasebe, and K. Morita, “Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus,” Journal of Clinical Microbiology, vol. 42, no. 1, pp. 257–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. L. L. M. Poon, B. W. Y. Wong, K. H. Chan et al., “Evaluation of real-time reverse transcriptase PCR and real-time loop-mediated amplification assays for severe acute respiratory syndrome coronavirus detection,” Journal of Clinical Microbiology, vol. 43, no. 7, pp. 3457–3459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. S. Y. Liang, Y. H. Chan, K. T. Hsia et al., “Development of loop-mediated isothermal amplification assay for detection of Entamoeba histolytica,” Journal of Clinical Microbiology, vol. 47, no. 6, pp. 1892–1895, 2009. View at Google Scholar
  178. A. Alhassan, O. M. M. Thekisoe, N. Yokoyama et al., “Development of loop-mediated isothermal amplification (LAMP) method for diagnosis of equine piroplasmosis,” Veterinary Parasitology, vol. 143, no. 2, pp. 155–160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  179. G. Guan, A. Chauvin, J. Luo et al., “The development and evaluation of a loop-mediated isothermal amplification (LAMP) method for detection of Babesia spp. infective to sheep and goats in China,” Experimental Parasitology, vol. 120, no. 1, pp. 39–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. H. Aonuma, A. Yoshimura, N. Perera et al., “Loop-mediated isothermal amplification applied to filarial parasites detection in the mosquito vectors: Dirofilaria immitis as a study model,” Parasites and Vectors, vol. 2, no. 1, article 15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. Y. Mori, K. Nagamine, N. Tomita, and T. Notomi, “Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation,” Biochemical and Biophysical Research Communications, vol. 289, no. 1, pp. 150–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  182. H. Iseki, A. Alhassan, N. Ohta et al., “Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites,” Journal of Microbiological Methods, vol. 71, no. 3, pp. 281–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. S. A. Dunbar, “Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection,” Clinica Chimica Acta, vol. 363, no. 1-2, pp. 71–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  184. N. Tang, P. Tornatore, and S. R. Weinberger, “Current developments in SELDI affinity technology,” Mass Spectrometry Reviews, vol. 23, no. 1, pp. 34–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  185. Z. Xiao, D. Prieto, T. P. Conrads, T. D. Veenstra, and H. J. Issaq, “Proteomic patterns: their potential for disease diagnosis,” Molecular and Cellular Endocrinology, vol. 230, no. 1-2, pp. 95–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  186. R. T. K. Pang, T. C. W. Poon, K. C. A. Chan et al., “Serum proteomic fingerprints of adult patients with severe acute respiratory syndrome,” Clinical Chemistry, vol. 52, no. 3, pp. 421–429, 2006. View at Publisher · View at Google Scholar · View at Scopus