Table of Contents Author Guidelines Submit a Manuscript
Interdisciplinary Perspectives on Infectious Diseases
Volume 2009 (2009), Article ID 415953, 7 pages
http://dx.doi.org/10.1155/2009/415953
Review Article

Rapid Diagnosis of Malaria

Infectious Disease Service, Brooke Army Medical Center, 3851 Roger Brooke Drive, Fort Sam Houston, TX 78234, USA

Received 29 January 2009; Accepted 27 April 2009

Academic Editor: Herbert B. Tanowitz

Copyright © 2009 Clinton K. Murray and Jason W. Bennett. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, World Malaria Report, 2008.
  2. D. Bell, C. Wongsrichanalai, and J. W. Barnwell, “Ensuring quality and access for malaria diagnosis: how can it be achieved?,” Nature Reviews Microbiology, vol. 4, no. 9, supplement, pp. 682–695, 2006. View at Publisher · View at Google Scholar · View at PubMed
  3. H. Reyburn, H. Mbakilwa, R. Mwangi et al., “Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised trial,” British Medical Journal, vol. 334, no. 7590, p. 403, 2007. View at Publisher · View at Google Scholar · View at PubMed
  4. D. Chandramohan, S. Jaffar, and B. Greenwood, “Use of clinical algorithms for diagnosing malaria,” Tropical Medicine & International Health, vol. 7, no. 1, pp. 45–52, 2002. View at Google Scholar
  5. J. A. Berkley, K. Maitland, I. Mwangi et al., “Use of clinical syndromes to target antibiotic prescribing in seriously ill children in malaria endemic area: observational study,” British Medical Journal, vol. 330, no. 7498, pp. 995–999, 2005. View at Publisher · View at Google Scholar · View at PubMed
  6. R. P. Peters, E. E. Zijlstra, M. J. Schijffelen et al., “A prospective study of bloodstream infections as cause of fever in Malawi: clinical predictors and implications for management,” Tropical Medicine & International Health, vol. 9, no. 8, pp. 928–934, 2004. View at Publisher · View at Google Scholar · View at PubMed
  7. C. Wongsrichanalai, C. K. Murray, M. Gray et al., “Co-infection with malaria and leptospirosis,” The American Journal of Tropical Medicine and Hygiene, vol. 68, no. 5, pp. 583–585, 2003. View at Google Scholar
  8. J. R. M. Armstrong-Schellenberg, T. Smith, P. L. Alonso, and R. J. Hayes, “What is clinical malaria? Finding case definitions for field research in highly endemic areas,” Parasitology Today, vol. 10, no. 11, pp. 439–442, 1994. View at Publisher · View at Google Scholar
  9. C. Luxemburger, F. Nosten, D. E. Kyle, L. Kiricharoen, T. Chongsuphajaisiddhi, and N. J. White, “Clinical features cannot predict a diagnosis of malaria or differentiate the infecting species in children living in an area of low transmission,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 92, no. 1, pp. 45–49, 1998. View at Publisher · View at Google Scholar
  10. D. H. Hamer, M. Ndhlovu, D. Zurovac et al., “Improved diagnostic testing and malaria treatment practices in Zambia,” The Journal of the American Medical Association, vol. 297, no. 20, pp. 2227–2231, 2007. View at Publisher · View at Google Scholar · View at PubMed
  11. V. D'Acremont, C. Lengeler, H. Mshinda, D. Mtasiwa, M. Tanner, and B. Genton, “Time to move from presumptive malaria treatment to laboratory-confirmed diagnosis and treatment in African children with fever,” PLoS Medicine, vol. 6, no. 1, article e252, pp. 1–3, 2009. View at Publisher · View at Google Scholar · View at PubMed
  12. A. P. Alker, P. Lim, R. Sem et al., “Pfmdr1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the Cambodian-Thai border,” The American Journal of Tropical Medicine and Hygiene, vol. 76, no. 4, pp. 641–647, 2007. View at Google Scholar
  13. C. K. Murray, R. A. Gasser, Jr., A. J. Magill, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clinical Microbiology Reviews, vol. 21, no. 1, pp. 97–110, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. D. C. Warhurst and J. E. Williams, “ACP broadsheet no 148. July 1996. Laboratory diagnosis of malaria,” Journal of Clinical Pathology, vol. 49, no. 7, pp. 533–538, 1996. View at Publisher · View at Google Scholar
  15. L. M. Milne, M. S. Kyi, P. L. Chiodini, and D. C. Warhurst, “Accuracy of routine laboratory diagnosis of malaria in the United Kingdom,” Journal of Clinical Pathology, vol. 47, no. 8, pp. 740–742, 1994. View at Publisher · View at Google Scholar
  16. F. E. McKenzie, J. Sirichaisinthop, R. S. Miller, R. A. Gasser, Jr., and C. Wongsrichanalai, “Dependence of malaria detection and species diagnosis by microscopy on parasite density,” The American Journal of Tropical Medicine and Hygiene, vol. 69, no. 4, pp. 372–376, 2003. View at Google Scholar
  17. R. E. Coleman, J. Sattabongkot, S. Promstaporm et al., “Comparison of PCR and microscopy for the detection of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area in Thailand,” Malaria Journal, vol. 5, article 121, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at PubMed
  18. D. Zurovac, B. Midia, S. A. Ochola, M. English, and R. W. Snow, “Microscopy and outpatient malaria case management among older children and adults in Kenya,” Tropical Medicine & International Health, vol. 11, no. 4, pp. 432–440, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. K. C. Kain, M. A. Harrington, S. Tennyson, and J. S. Keystone, “Imported malaria: prospective analysis of problems in diagnosis and management,” Clinical Infectious Diseases, vol. 27, no. 1, pp. 142–149, 1998. View at Publisher · View at Google Scholar
  20. L. Barat, J. Chipipa, M. Kolczak, and T. Sukwa, “Does the availability of blood slide microscopy for malaria at health centers improve the management of persons with fever in Zambia?,” The American Journal of Tropical Medicine and Hygiene, vol. 60, no. 6, pp. 1024–1030, 1999. View at Google Scholar
  21. M. Zhou, Q. Liu, C. Wongsrichanalai et al., “High prevalence of Plasmodium malariae and Plasmodium ovale in malaria patients along the Thai-Myanmar border, as revealed by acridine orange staining and PCR-based diagnoses,” Tropical Medicine & International Health, vol. 3, no. 4, pp. 304–312, 1998. View at Publisher · View at Google Scholar
  22. D. N. Durrheim, P. J. Becker, and K. Billinghurst, “Diagnostic disagreement—the lessons learnt from malaria diagnosis in Mpumalanga,” South African Medical Journal, vol. 87, no. 8, p. 1016, 1997. View at Google Scholar
  23. N. W. Stow, J. K. Torrens, and J. Walker , “An assessment of the accuracy of clinical diagnosis, local microscopy and a rapid immunochromatographic card test in comparison with expert microscopy in the diagnosis of malaria in rural Kenya,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 93, no. 5, pp. 519–520, 1999. View at Publisher · View at Google Scholar
  24. S. P. Kachur, E. Nicolas, V. Jean-François et al., “Prevalence of malaria parasitemia and accuracy of microscopic diagnosis in Haiti, October 1995,” Revista Panamericana de Salud Pùblica, vol. 3, no. 1, pp. 35–39, 1998. View at Google Scholar
  25. A. H. D. Kilian, W. G. Metzger, E. J. Mutschelknauss et al., “Reliability of malaria microscopy in epidemiological studies: results of quality control,” Tropical Medicine & International Health, vol. 5, no. 1, pp. 3–8, 2000. View at Publisher · View at Google Scholar
  26. D. Payne, “Use and limitations of light microscopy for diagnosing malaria at the primary health care level,” Bulletin of the World Health Organization, vol. 66, no. 5, pp. 621–626, 1988. View at Google Scholar
  27. C. Wongsrichanalai, M. J. Barcus, S. Muth, A. Sutamihardja, and W. A. Wernsdorfer, “A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT),” The American Society of Tropical Medicine and Hygiene, vol. 77, no. 6, supplement, pp. 119–127, 2007. View at Google Scholar
  28. A. Moody, “Rapid diagnostic tests for malaria parasites,” Clinical Microbiology Reviews, vol. 15, no. 1, pp. 66–78, 2002. View at Publisher · View at Google Scholar
  29. C. K. Murray, D. Bell, R. A. Gasser, Jr., and C. Wongsrichanalai, “Rapid diagnostic testing for malaria,” Tropical Medicine & International Health, vol. 8, no. 10, pp. 876–883, 2003. View at Publisher · View at Google Scholar
  30. C. J. Shiff, Z. Premji, and J. N. Minjas, “The rapid manual ParaSight®-F test : a new diagnostic tool for Plasmodium falciparum infection,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 87, no. 6, pp. 646–648, 1993. View at Publisher · View at Google Scholar
  31. D. P. Mason, F. Kawamoto, K. Lin, A. Laoboonchai, and C. Wongsrichanalai, “A comparison of two rapid field immunochromatographic tests to expert microscopy in the diagnosis of malaria,” Acta Tropica, vol. 82, no. 1, pp. 51–59, 2002. View at Publisher · View at Google Scholar
  32. S. Banoo, D. Bell, P. Bossuyt et al., “Evaluation of diagnostic tests for infectious diseases: general principles,” Nature Reviews Microbiology, vol. 4, no. 12, supplement, pp. S20–S32, 2006. View at Publisher · View at Google Scholar · View at PubMed
  33. D. Bell and R. W. Peeling, “Evaluation of rapid diagnostic tests: malaria,” Nature Reviews Microbiology, vol. 4, no. 9, supplement, pp. S34–S38, 2006. View at Publisher · View at Google Scholar · View at PubMed
  34. WHO, “New perspectives: malaria diagnosis,” Report of a Joint WHO/USAID Informal Consultation, World Health Organization, Geneva, Switzerland, October 1999. View at Google Scholar
  35. M. T. Makler and D. J. Hinrichs, “Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia,” The American Journal of Tropical Medicine and Hygiene, vol. 48, no. 2, pp. 205–210, 1993. View at Google Scholar
  36. M. T. Makler, R. C. Piper, and W. K. Milhous, “Lactate dehydrogenase and the diagnosis of malaria,” Parasitology Today, vol. 14, no. 9, pp. 376–377, 1998. View at Publisher · View at Google Scholar
  37. W. M. Brown, C. A. Yowell, A. Hoard et al., “Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites,” Biochemistry, vol. 43, no. 20, pp. 6219–6229, 2004. View at Publisher · View at Google Scholar · View at PubMed
  38. J. R. Forney, C. Wongsrichanalai, A. J. Magill et al., “Devices for rapid diagnosis of malaria: evaluation of prototype assays that detect Plasmodium falciparum histidine-rich protein 2 and a Plasmodium vivax-specific antigen,” Journal of Clinical Microbiology, vol. 41, no. 6, pp. 2358–2366, 2003. View at Publisher · View at Google Scholar
  39. R. J. Howard, S. Uni, M. Aikawa et al., “Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes,” The Journal of Cell Biology, vol. 103, no. 4, pp. 1269–1277, 1986. View at Publisher · View at Google Scholar
  40. E. P. Rock, K. Marsh, A. J. Saul et al., “Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin,” Parasitology, vol. 95, part 2, pp. 209–227, 1987. View at Google Scholar
  41. T. D. Swarthout, H. Counihan, R. K. K. Senga, and I. van den Broek, “Paracheck-Pf® accuracy and recently treated Plasmodium falciparum infections: is there a risk of over-diagnosis?,” Malaria Journal, vol. 6, article 58, pp. 1–6, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. J. Karbwang, O. Tasanor, T. Kanda et al., “ParaSightTM-F test for the detection of treatment failure in multidrug resistant Plasmodium falciparum malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 90, no. 5, pp. 513–515, 1996. View at Publisher · View at Google Scholar
  43. J. Richter, K. Göbels, I. Müller-Stöyer, B. Hoppenheit, and D, Häussinger, “Co-reactivity of plasmodial histidine-rich protein 2 and aldolase on a combined immuno-chromographic-malaria dipstick (ICT) as a potential semi-quantitative marker of high Plasmodium falciparum parasitaemia,” Parasitology Research, vol. 94, no. 5, pp. 384–385, 2004. View at Publisher · View at Google Scholar · View at PubMed
  44. R. A. Gasser, Jr., A. J. Magill, T. K. Ruebush, II et al., “Malaria diagnosis: performance of NOW® ICT malaria in a large scale field trial,” in Proceedings of the 54th Annual Meeting of the American Society of Tropical Medicine and Hygiene, Washington, DC, USA, December 2005.
  45. N. Lee, J. Baker, K. T. Andrews et al., “Effect of sequence variation in Plasmodium falciparum histidine-rich protein 2 on binding of specific monoclonal antibodies: implications for rapid diagnostic tests for malaria,” Journal of Clinical Microbiology, vol. 44, no. 8, pp. 2773–2778, 2006. View at Publisher · View at Google Scholar · View at PubMed
  46. J. Baker, J. McCarthy, M. Gatton et al., “Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests,” The Journal of Infectious Diseases, vol. 192, no. 5, pp. 870–877, 2005. View at Publisher · View at Google Scholar · View at PubMed
  47. N. Lee, J. Baker, D. Bell, J. McCarthy, and Q. Cheng, “Assessing the genetic diversity of the aldolase genes of Plasmodium falciparum and Plasmodium vivax and its potential effect on performance of aldolase-detecting rapid diagnostic tests,” Journal of Clinical Microbiology, vol. 44, no. 12, pp. 4547–4549, 2006. View at Publisher · View at Google Scholar · View at PubMed
  48. G. L. Genrich, J. Guarner, C. D. Paddock et al., “Fatal malaria infection in travelers: novel immunohistochemical assays for the detection of Plasmodium falciparum in tissues and implications for pathogenesis,” The American Journal of Tropical Medicine and Hygiene, vol. 76, no. 2, pp. 251–259, 2007. View at Google Scholar
  49. I. B. Suh, H. K. Choi, S. W. Lee et al., “Reactivity of sera from cases of Plasmodium vivax malaria towards three recombinant antigens based on the surface proteins of the parasite,” Annals of Tropical Medicine and Parasitology, vol. 97, no. 5, pp. 481–487, 2003. View at Publisher · View at Google Scholar · View at PubMed
  50. A. K. Nyame, Z. S. Kawar, and R. D. Cummings, “Antigenic glycans in parasitic infections: implications for vaccines and diagnostics,” Archives of Biochemistry and Biophysics, vol. 426, no. 2, pp. 182–200, 2004. View at Publisher · View at Google Scholar · View at PubMed
  51. I. Mueller, I. Betuela, M. Ginny, J. C. Reeder, and B. Genton, “The sensitivity of the OptiMAL rapid diagnostic test to the presence of Plasmodium falciparum gametocytes compromises its ability to monitor treatment outcomes in an area of Papua New Guinea in which malaria is endemic,” Journal of Clinical Microbiology, vol. 45, no. 2, pp. 627–630, 2007. View at Publisher · View at Google Scholar · View at PubMed
  52. A. Marx, D. Pewsner, M. Egger et al., “Meta-analysis: accuracy of rapid tests for malaria in travelers returning from endemic areas,” The American Journal of Tropical Medicine and Hygiene, vol. 142, no. 10, pp. 836–846, 2005. View at Google Scholar
  53. R. S. Miller, N. Uthaimongkol, M. F. Fukuda et al., “Comparison of performance characteristics of the Binax NOW® Malaria test using venous and fingerstick samples,” in Proceedings of the 55th Annual Meeting of the American Society of Tropical Medicine and Hygiene, Atlanta, Ga, USA, November 2006.
  54. T. F. McCutchan, R. C. Piper, and M. T. Makler, “Use of malaria rapid diagnostic test to identify Plasmodium knowlesi infection,” Emerging Infectious Diseases, vol. 14, no. 11, pp. 1750–1752, 2008. View at Publisher · View at Google Scholar
  55. R. F. Leke, R. R. Djokam, R. Mbu et al., “Detection of the Plasmodium falciparum antigen histidine-rich protein 2 in blood of pregnant women: implications for diagnosing placental malaria,” Journal of Clinical Microbiology, vol. 37, no. 9, pp. 2992–2996, 1999. View at Google Scholar
  56. M. Trachsler, P. Schlagenhauf, and R. Steffen, “Feasibility of a rapid dipstick antigen-capture assay for self-testing of travellers' malaria,” Tropical Medicine & International Health, vol. 4, no. 6, pp. 442–447, 1999. View at Google Scholar
  57. S. A. Harvey, L. Jennings, M. Chinyama, F. Masaninga, K. Mulholland, and D. R. Bell, “Improving community health worker use of malaria rapid diagnostic tests in Zambia: package instructions, job aid and job aid-plus-training,” Malaria Journal, vol. 7, article 160, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at PubMed
  58. T. Endeshaw, T. Gebre, J. Ngondi et al., “Evaluation of light microscopy and rapid diagnostic test for the detection of malaria under operational field conditions: a household survey in Ethiopia,” Malaria Journal, vol. 7, article 118, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at PubMed
  59. A. H. Roukens, J. Berg, A. Barbey, and L. G. Visser, “Performance of self-diagnosis and standby treatment of malaria in international oilfield service employees in the field,” Malaria Journal, vol. 7, article 128, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at PubMed
  60. R. L. Miller, S. Ikram, G. J. Armelagos et al., “Diagnosis of Plasmodium falciparum infections in mummies using the rapid manual ParaSight-F test,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 88, no. 1, pp. 31–32, 1994. View at Google Scholar
  61. S. A. Shekalaghe, J. T. Bousema, K. K. Kunei et al., “Submicroscopic Plasmodium falciparum gametocyte carriage is common in an area of low and seasonal transmission in Tanzania,” Tropical Medicine & International Health, vol. 12, no. 4, pp. 547–553, 2007. View at Google Scholar
  62. P. Mens, N. Spieker, S. Omar, M. Heijnen, H. Schallig, and P. A. Kager, “Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania,” Tropical Medicine & International Health, vol. 12, no. 2, pp. 238–244, 2007. View at Google Scholar
  63. R. E. Coleman, N. Maneechai, N. Rachaphaew et al., “Comparison of field and expert laboratory microscopy for active surveillance for asymptomatic Plasmodium falciparum and Plasmodium vivax in western Thailand,” The American Journal of Tropical Medicine and Hygiene, vol. 67, no. 2, pp. 141–144, 2002. View at Google Scholar
  64. A. D. Kitchen and P. L. Chiodini, “Malaria and blood transfusion,” Vox Sanguinis, vol. 90, no. 2, pp. 77–84, 2006. View at Publisher · View at Google Scholar · View at PubMed
  65. G. Snounou and N. J. White, “The co-existence of Plasmodium: sidelights from falciparum and vivax malaria in Thailand,” Trends in Parasitology, vol. 20, no. 7, pp. 333–339, 2004. View at Publisher · View at Google Scholar · View at PubMed
  66. B. Susi, T. Whitman, D. L. Blazes, T. H. Burgess, G. J. Martin, and D. Freilich, “Rapid diagnostic test for Plasmodium falciparum in 32 Marines medically evacuated from liberia with a febrile illness,” Annals of Internal Medicine, vol. 142, no. 6, pp. 476–477, 2005. View at Google Scholar
  67. W. M. Stauffer, A. M. Newberry, C. P. Cartwright et al., “Evaluation of malaria screening in newly arrived refugees to the United States by microscopy and rapid antigen capture enzyme assay,” Pediatric Infectious Disease Journal, vol. 25, no. 10, pp. 948–950, 2006. View at Publisher · View at Google Scholar · View at PubMed
  68. M. E. Rafael, T. Taylor, A. Magil, Y.-W. Lim, F. Girosi, and R. Allan, “Reducing the burden of childhood malaria in Africa: the role of improved,” Nature, vol. 444, pp. 39–48, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. S. Shillcutt, C. Morel, C. Goodman et al., “Cost-effectiveness of malaria diagnostic methods in sub-Saharan Africa in an era of combination therapy,” Bulletin of the World Health Organization, vol. 86, no. 2, pp. 101–110, 2008. View at Publisher · View at Google Scholar