Table of Contents Author Guidelines Submit a Manuscript
Interdisciplinary Perspectives on Infectious Diseases
Volume 2011 (2011), Article ID 918038, 7 pages
http://dx.doi.org/10.1155/2011/918038
Review Article

Immune Modulation as Adjunctive Therapy for Pneumocystis pneumonia

1Department of Pediatrics, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, P.O. Box 850, Rochester, NY 14642, USA
2Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, P.O. Box 850, Rochester, NY 14642, USA

Received 10 March 2011; Accepted 7 June 2011

Academic Editor: Joshua Metlay

Copyright © 2011 Jing Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. L. Benfield, R. van Steenwijk, T. L. Nielsen et al., “Interleukin-8 and eicosanoid production in the lung during moderate to severe Pneumocystis carinii pneumonia in AIDS: a role of interleukin-8 in the pathogenesis of P. carinii pneumonia,” Respiratory Medicine, vol. 89, no. 4, pp. 285–290, 1995. View at Publisher · View at Google Scholar
  2. B. N. Jensen, I. M. Lisse, J. Gerstoft, S. Borgeskov, and P. Skinhoj, “Cellular profiles in bronchoalveolar lavage fluid of HIV-infected patients with pulmonary symptoms: relation to diagnosis and prognosis,” AIDS, vol. 5, no. 5, pp. 527–533, 1991. View at Google Scholar
  3. A. H. Limper, K. P. Offord, T. F. Smith, and W. J. Martin, “Pneumocystis carinii pneumonia. Differences in lung parasite number and inflammation in patients with and without AIDS,” American Review of Respiratory Disease, vol. 140, no. 5, pp. 1204–1209, 1989. View at Google Scholar
  4. G. Y. Lipschik, M. E. Doerfler, J. A. Kovacs et al., “Leukotriene B4 and interleukin-8 in human immunodeficiency virus-related pulmonary disease,” Chest, vol. 104, no. 3, pp. 763–769, 1993. View at Google Scholar
  5. G. R. Mason, C. H. Hashimoto, P. S. Dickman, L. F. Foutty, and C. J. Cobb, “Prognostic implications of bronchoalveolar lavage neutrophilia in patients with Pneumocystis carinii pneumonia and AIDS,” American Review of Respiratory Disease, vol. 139, no. 6, pp. 1336–1342, 1989. View at Google Scholar
  6. R. L. Smith, W. M. El-Sadr, and M. L. Lewis, “Correlation of broncoalveolar lavage cell populations with clinical severity of Pneumocystic carinii pneumonia,” Chest, vol. 93, no. 1, pp. 60–64, 1988. View at Google Scholar
  7. T. W. Wright, F. Gigliotti, J. N. Finkelstein, J. T. McBride, C. L. An, and A. G. Harmsen, “Immune-mediated inflammation directly impairs pulmonary function, contributing to the pathogenesis of Pneumocystis carinii pneumonia,” Journal of Clinical Investigation, vol. 104, no. 9, pp. 1307–1317, 1999. View at Google Scholar
  8. J. Phair, A. Munoz, R. Detels, R. Kaslow, C. Rinaldo, and A. Saah, “The risk of Pneumocystis carinii pneumonia among men infected with human immunodeficiency virus type 1. Multicenter AIDS cohort study group,” The New England Journal of Medicine, vol. 322, no. 3, pp. 161–165, 1990. View at Google Scholar
  9. J. Shellito, V. V. Suzara, W. Blumenfeld, J. M. Beck, H. J. Steger, and T. H. Ermak, “A new model of Pneumocystis carinii infection in mice selectively depleted of helper T lymphocytes,” Journal of Clinical Investigation, vol. 85, no. 5, pp. 1686–1693, 1990. View at Google Scholar
  10. N. G. Mansharamani, D. Balachandran, I. Vernovsky, R. Garland, and H. Koziel, “Peripheral blood CD4 + T-lymphocyte counts during Pneumocystis carinii pneumonia in immunocompromised patients without HIV infection,” Chest, vol. 118, no. 3, pp. 712–720, 2000. View at Google Scholar
  11. S. M. Barry, M. C. I. Lipman, A. R. Deery, M. A. Johnson, and G. Janossy, “Immune reconstitution pneumonitis following Pneumocystis carinii pneumonia in HIV-infected subjects,” HIV Medicine, vol. 3, no. 3, pp. 207–211, 2002. View at Publisher · View at Google Scholar
  12. G. J. Dore, Y. Li, A. McDonald, H. Ree, and J. M. Kaldor, “Impact of highly active antiretroviral therapy on individual AIDS-defining illness incidence and survival in Australia,” Journal of Acquired Immune Deficiency Syndromes, vol. 29, no. 4, pp. 388–395, 2002. View at Google Scholar
  13. A. Slivka, P. Y. Wen, W. M. Shea, and J. S. Loeffler, “Pneumocystis carinii pneumonia during steroid taper in patients with primary brain tumors,” American Journal of Medicine, vol. 94, no. 2, pp. 216–219, 1993. View at Publisher · View at Google Scholar
  14. S. P. Bhagwat, T. W. Wright, and F. Gigliotti, “Anti-CD3 antibody decreases inflammation and improves outcome in a murine model of Pneumocystis pneumonia,” Journal of Immunology, vol. 184, no. 1, pp. 497–502, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. T. W. Wright, C. J. Johnston, A. G. Harmsen, and J. N. Finkelstein, “Chemokine gene expression during Pneumocystis carinii-driven pulmonary inflammation,” Infection and Immunity, vol. 67, no. 7, pp. 3452–3460, 1999. View at Google Scholar
  16. S. P. Bhagwat, F. Gigliotti, H. D. Xu, and T. W. Wright, “Contribution of T cell subsets to the pathophysiology of Pneumocystis-related immunorestitution disease,” AJP—Lung Cellular and Molecular Physiology, vol. 291, no. 6, pp. L1256–L1266, 2006. View at Publisher · View at Google Scholar · View at PubMed
  17. S. D. Swain, N. N. Meissner, and A. G. Harmsen, “CD8 T cells modulate CD4 T-cell and eosinophil-mediated pulmonary pathology in Pneumocystis pneumonia in B-cell-deficient mice,” American Journal of Pathology, vol. 168, no. 2, pp. 466–475, 2006. View at Publisher · View at Google Scholar · View at PubMed
  18. F. Gigliotti, E. L. Crow, S. P. Bhagwat, and T. W. Wright, “Sensitized CD8+ T cells fail to control organism burden but accelerate the onset of lung injury during Pneumocystis carinii pneumonia,” Infection and Immunity, vol. 74, no. 11, pp. 6310–6316, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. J. K. Kolls, S. Habetz, M. K. Shean et al., “IFN-gamma and CD8+ T cells restore host defenses against Pneumocystis carinii in mice depleted of CD4+ T cells,” Journal of Immunology, vol. 162, no. 5, pp. 2890–2894, 1999. View at Google Scholar
  20. F. McAllister, C. Steele, M. Zheng et al., “T cytotoxic-1 CD8+ T cells are effector cells against pneumocystis in mice,” Journal of Immunology, vol. 172, no. 2, pp. 1132–1138, 2004. View at Google Scholar
  21. F. McAllister, C. Steele, M. Zheng, J. E. Shellito, and J. K. Kolls, “In vitro effector activity of Pneumocystis murina-specific T-cytotoxic-1 CD8+ T cells: role of granulocyte-macrophage colony-stimulating factor,” Infection and Immunity, vol. 73, no. 11, pp. 7450–7457, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. C. M. Lloyd and C. M. Hawrylowicz, “Regulatory T cells in asthma,” Immunity, vol. 31, no. 3, pp. 438–449, 2009. View at Publisher · View at Google Scholar · View at PubMed
  23. S. Hori, T. L. Carvalho, and J. Demengeot, “CD25+CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice,” European Journal of Immunology, vol. 32, no. 5, pp. 1282–1291, 2002. View at Google Scholar
  24. L. McKinley, A. J. Logar, F. McAllister, M. Zheng, C. Steele, and J. K. Kolls, “Regulatory T cells dampen pulmonary inflammation and lung injury in an animal model of pneumocystis pneumonia,” Journal of Immunology, vol. 177, no. 9, pp. 6215–6226, 2006. View at Google Scholar
  25. S. D. Swain, T. W. Wright, P. M. Degel, F. Gigliotti, and A. G. Harmsen, “Neither neutrophils nor reactive oxygen species contribute to tissue damage during Pneumocystis pneumonia in mice,” Infection and Immunity, vol. 72, no. 10, pp. 5722–5732, 2004. View at Publisher · View at Google Scholar · View at PubMed
  26. F. Lebron, R. Vassallo, V. Puri, and A. H. Limper, “Pneumocystis carinii cell wall beta-glucans initiate macrophage inflammatory responses through NF-kappaB activation,” Journal of Biological Chemistry, vol. 278, no. 27, pp. 25001–25008, 2003. View at Publisher · View at Google Scholar · View at PubMed
  27. C. Steele, L. Marrero, S. Swain et al., “Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor,” Journal of Experimental Medicine, vol. 198, no. 11, pp. 1677–1688, 2003. View at Publisher · View at Google Scholar · View at PubMed
  28. J. Zhang, J. Zhu, A. Imrich, M. Cushion, T. B. Kinane, and H. Koziel, “Pneumocystis activates human alveolar macrophage NF-kappaB signaling through mannose receptors,” Infection and Immunity, vol. 72, no. 6, pp. 3147–3160, 2004. View at Publisher · View at Google Scholar · View at PubMed
  29. M. E. Lasbury, C. A. Ray, P. J. Durant et al., “Survival pathway signal transduction is reduced in alveolar macrophages during Pneumocystis pneumonia,” Journal of Eukaryotic Microbiology, vol. 53, supplement 1, pp. S130–S131, 2006. View at Publisher · View at Google Scholar · View at PubMed
  30. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at PubMed
  31. F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Alternative activation of macrophages: an immunologic functional perspective,” Frontiers in Bioscience, vol. 1, no. 13, pp. 438–449, 2009. View at Google Scholar
  32. J. Wang, F. Gigliotti, S. P. Bhagwat, T. C. George, and T. W. Wright, “Immune modulation with sulfasalazine attenuates immunopathogenesis but enhances macrophage-mediated fungal clearance during Pneumocystis pneumonia,” PLoS Pathogens, vol. 6, no. 8, Article ID e1001058, 2010. View at Publisher · View at Google Scholar · View at PubMed
  33. M. P. Nelson, B. S. Christmann, J. L. Werner et al., “IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen Pneumocystis murina,” Journal of Immunology, vol. 186, no. 4, pp. 2372–2381, 2011. View at Google Scholar
  34. E. M. Carmona, J. D. Lamont, A. Xue, M. Wylam, and A. H. Limper, “Pneumocystis cell wall beta-glucan stimulates calcium-dependent signaling of IL-8 secretion by human airway epithelial cells,” Respiratory Research, vol. 11, p. 95, 2010. View at Google Scholar
  35. S. E. Evans, P. Y. Hahn, F. McCann, T. J. Kottom, Z. V. Pavlovic', and A. H. Limper, “Pneumocystis cell wall beta-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-kappaB-dependent mechanisms,” American Journal of Respiratory Cell and Molecular Biology, vol. 32, no. 6, pp. 490–497, 2005. View at Google Scholar
  36. J. Wang, F. Gigliotti, S. Maggirwar, C. Johnston, J. N. Finkelstein, and T. W. Wright, “Pneumocystis carinii activates the NF-kappaB signaling pathway in alveolar epithelial cells,” Infection and Immunity, vol. 73, no. 5, pp. 2766–2777, 2005. View at Publisher · View at Google Scholar · View at PubMed
  37. J. Wang, F. Gigliotti, S. P. Bhagwat, S. B. Maggirwar, and T. W. Wright, “Pneumocystisstimulates MCP-1 production by alveolar epithelial cells through a JNK-dependent mechanism,” AJP—Lung Cellular and Molecular Physiology, vol. 292, no. 6, pp. L1495–L1505, 2007. View at Publisher · View at Google Scholar · View at PubMed
  38. G. S. Pryhuber, H. L. Huyck, S. Bhagwat et al., “Parenchymal cell TNF receptors contribute to inflammatory cell recruitment and respiratory failure in Pneumocystis carinii-induced pneumonia,” Journal of Immunology, vol. 181, no. 2, pp. 1409–1419, 2008. View at Google Scholar
  39. S. A. Bozzette, “The use of corticosteroids in Pneumocystis carinii pneumonia,” Journal of Infectious Diseases, vol. 162, no. 6, pp. 1365–1369, 1990. View at Google Scholar
  40. S. Gagnon, A. M. Boota, M. A. Fischl, H. Baier, O. W. Kirksey, and L. La Voie, “Corticosteroids as adjunctive therapy for severe Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. A double-blind, placebo-controlled trial,” The New England Journal of Medicine, vol. 323, no. 21, pp. 1444–1450, 1990. View at Google Scholar
  41. P. D. Walzer, H. E. R. Evans, A. J. Copas, S. G. Edwards, A. D. Grant, and R. F. Miller, “Early predictors of mortality from Pneumocystis jirovecii pneumonia in HIV-infected patients: 1985–2006,” Clinical Infectious Diseases, vol. 46, no. 4, pp. 625–633, 2008. View at Publisher · View at Google Scholar · View at PubMed
  42. D. R. Dorscheid, K. R. Wojcik, S. Sun, B. Marroquin, and S. R. White, “Apoptosis of airway epithelial cells induced by corticosteroids,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 10, part 1, pp. 1939–1947, 2001. View at Google Scholar
  43. M. J. Brookes and J. R. B. Green, “Maintenance of remission in Crohn's disease: current and emerging therapeutic options,” Drugs, vol. 64, no. 10, pp. 1069–1089, 2004. View at Google Scholar
  44. J. R. O'Dell, C. E. Haire, N. Erikson et al., “Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications,” The New England Journal of Medicine, vol. 334, no. 20, pp. 1287–1291, 1996. View at Publisher · View at Google Scholar · View at PubMed
  45. G. L. Plosker and K. F. Croom, “Sulfasalazine: a review of its use in the management of rheumatoid arthritis,” Drugs, vol. 65, no. 13, pp. 1825–1849, 2005. View at Publisher · View at Google Scholar
  46. S. Liptay, M. Bachem, G. Hacker, G. Adler, K. M. Debatin, and R. M. Schmid, “Inhibition of nuclear factor kappa B and induction of apoptosis in T-lymphocytes by sulfasalazine,” British Journal of Pharmacology, vol. 128, no. 7, pp. 1361–1369, 1999. View at Google Scholar
  47. S. Liptay, S. Fulda, M. Schanbacher et al., “Molecular mechanisms of sulfasalazine-induced T-cell apoptosis,” British Journal of Pharmacology, vol. 137, no. 5, pp. 608–620, 2002. View at Publisher · View at Google Scholar · View at PubMed
  48. R. Oerlemans, J. Vink, B. A. C. Dijkmans et al., “Sulfasalazine sensitises human monocytic/macrophage cells for glucocorticoids by upregulation of glucocorticoid receptor alpha and glucocorticoid induced apoptosis,” Annals of the Rheumatic Diseases, vol. 66, no. 10, pp. 1289–1295, 2007. View at Publisher · View at Google Scholar · View at PubMed
  49. C. Wahl, S. Liptay, G. Adler, and R. M. Schmid, “Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B,” Journal of Clinical Investigation, vol. 101, no. 5, pp. 1163–1174, 1998. View at Google Scholar
  50. C. K. Weber, S. Liptay, G. Adler, and R. M. Schmid, “Suppression of NF-kappaB activity by sulfasalazine is mediated by direct inhibition of IkappaB kinases alpha and beta,” Gastroenterology, vol. 119, no. 5, pp. 1209–1218, 2000. View at Google Scholar
  51. C. Ferrandi, F. Richard, P. Tavano et al., “Characterization of immune cell subsets during the active phase of multiple sclerosis reveals disease and c-Jun N-terminal kinase pathway biomarkers,” Multiple Sclerosis, vol. 17, no. 1, pp. 43–56, 2011. View at Google Scholar
  52. T. C. Jones, “The effects of rhGM-CSF on macrophage function,” European Journal of Cancer Part A, vol. 29, supplement 3, pp. S10–S13, 1993. View at Google Scholar
  53. T. C. Jones, “The effect of granulocyte-macrophage colony stimulating factor (rGM-CSF) on macrophage function in microbial disease,” Medical Oncology, vol. 13, no. 3, pp. 141–147, 1996. View at Google Scholar
  54. J. F. Mandujano, N. B. D'Souza, S. Nelson, W. R. Summer, R. C. Beckerman, and J. E. Shellito, “Granulocyte-macrophage colony stimulating factor and Pneumocystis carinii pneumonia in mice,” American Journal of Respiratory and Critical Care Medicine, vol. 151, no. 4, pp. 1233–1238, 1995. View at Google Scholar
  55. R. Paine III, A. M. Preston, S. Wilcoxen et al., “Granulocyte-macrophage colony-stimulating factor in the innate immune response to Pneumocystis carinii pneumonia in mice,” Journal of Immunology, vol. 164, no. 5, pp. 2602–2609, 2000. View at Google Scholar
  56. M. H. Qureshi, K. M. Empey, and B. A. Garvy, “Modulation of proinflammatory responses to Pneumocystis carinii f. sp. muris in neonatal mice by granulocyte-macrophage colony-stimulating factor and IL-4: role of APCs,” Journal of Immunology, vol. 174, no. 1, pp. 441–448, 2005. View at Google Scholar
  57. T. W. Wright, G. S. Pryhuber, P. R. Chess, Z. Wang, R. H. Notter, and F. Gigliotti, “TNF receptor signaling contributes to chemokine secretion, inflammation, and respiratory deficits during Pneumocystis pneumonia,” Journal of Immunology, vol. 172, no. 4, pp. 2511–2521, 2004. View at Google Scholar
  58. J. K. Kolls, D. Lei, C. Vazquez et al., “Exacerbation of murine Pneumocystis carinii infection by adenoviral-mediated gene transfer of a TNF inhibitor,” American Journal of Respiratory Cell and Molecular Biology, vol. 16, no. 2, pp. 112–118, 1997. View at Google Scholar
  59. W. Chen, E. A. Havell, and A. G. Harmsern, “Importance of endogenous tumor necrosis factor alpha and gamma interferon in host resistance against Pneumocystis carinii infection,” Infection and Immunity, vol. 60, no. 4, pp. 12793–1284, 1992. View at Google Scholar