Table of Contents Author Guidelines Submit a Manuscript
Interdisciplinary Perspectives on Infectious Diseases
Volume 2012 (2012), Article ID 124879, 7 pages
http://dx.doi.org/10.1155/2012/124879
Research Article

Antibiotic Resistance of Escherichia coli Serotypes from Cochin Estuary

1Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Lakeside Campus, Cochin 682 016, India
2Mathematics & Sciences Division, Richland Community College, One College Park, Decatur, IL 62521, USA
3MacMurray College, 447 East College Avenue, Jacksonville, IL 62650, USA
4Environment Genomics Laboratory, Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA

Received 30 May 2012; Revised 21 July 2012; Accepted 31 July 2012

Academic Editor: Mary E. Marquart

Copyright © 2012 Divya P. Sukumaran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. R. Ariza, S. P. Cohen, N. Bachhawat, S. B. Levy, and B. Demple, “Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli,” Journal of Bacteriology, vol. 176, no. 1, pp. 143–148, 1994. View at Google Scholar · View at Scopus
  2. S. P. Cohen, L. M. McMurry, D. C. Hooper, J. S. Wolfson, and S. B. Levy, “Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction,” Antimicrobial Agents and Chemotherapy, vol. 33, no. 8, pp. 1318–1325, 1989. View at Google Scholar · View at Scopus
  3. C. Maynard, J. M. Fairbrother, S. Bekal et al., “Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 10, pp. 3214–3221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kolář, K. Urbánek, and T. Látal, “Antibiotic selective pressure and development of bacterial resistance,” International Journal of Antimicrobial Agents, vol. 17, no. 5, pp. 357–363, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. R. Johnson, M. R. Sannes, C. Croy et al., “Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004,” Emerging Infectious Diseases, vol. 13, no. 6, pp. 838–846, 2007. View at Google Scholar · View at Scopus
  6. M. Sabaté, G. Prats, E. Moreno, E. Ballesté, A. R. Blanch, and A. Andreu, “Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater,” Research in Microbiology, vol. 159, no. 4, pp. 288–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Perreten and P. Boerlin, “A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 3, pp. 1169–1172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Wang, X. Ruan, D. Wei et al., “Development of a serogroup-specific multiplex PCR assay to detect a set of Escherichia coli serogroups based on the identification of their O-antigen gene clusters,” Molecular and Cellular Probes, vol. 24, no. 5, pp. 286–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. P. Nataro and J. B. Kaper, “Diarrheagenic Escherichia coli,” Clinical Microbiology Reviews, vol. 11, no. 1, pp. 142–201, 1998. View at Google Scholar · View at Scopus
  10. L. Feng, A. V. Perepelov, G. Zhao et al., “Structural and genetic evidence that the Escherichia coli O148 O antigen is the precursor of the Shigella dysenteriae 1 O antigen and identification of a glucosyltransferase gene,” Microbiology, vol. 153, no. 1, pp. 139–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Sambook, E. Fritsch, and T. Maniatis, Molecular Cloning: A Lboratory Manual, Cold spring Harbor Laboratory Press, New York, NY, USA, 1989.
  12. A. K. Bej, J. L. DiCesare, L. Haff, and R. M. Atlas, “Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid,” Applied and Environmental Microbiology, vol. 57, no. 4, pp. 1013–1017, 1991. View at Google Scholar · View at Scopus
  13. A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” American Journal of Clinical Pathology, vol. 45, no. 4, pp. 493–496, 1966. View at Google Scholar · View at Scopus
  14. CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 17th Informational Supplement. M100-S17, vol. 27, Clinical Laboratory standards Institute, Wayne, Pa, USA, 2007.
  15. C. Levesque, L. Piche, C. Larose, and P. H. Roy, “PCR mapping of integrons reveals several novel combinations of resistance genes,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 1, pp. 185–191, 1995. View at Google Scholar · View at Scopus
  16. R. Sehgal, Y. Kumar, and S. Kumar, “Prevalence and geographical distribution of Escherichia coli O157 in India: a 10-year survey,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 4, pp. 380–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Perelle, F. Dilasser, J. Grout, and P. Fach, “Screening food raw materials for the presence of the world's most frequent clinical cases of Shiga toxin-encoding Escherichia coli O26, O103, O111, O145 and O157,” International Journal of Food Microbiology, vol. 113, no. 3, pp. 284–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Pérez, O. G. Gómez-Duarte, and M. L. Arias, “Diarrheagenic Escherichia coli in children from Costa Rica,” American Journal of Tropical Medicine and Hygiene, vol. 83, no. 2, pp. 292–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Kim, J. N. Jensen, D. S. Aga, and A. S. Weber, “Tetracycline as a selector for resistant bacteria in activated sludge,” Chemosphere, vol. 66, no. 9, pp. 1643–1651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Al-Ahmad, F. D. Daschner, and K. Kümmerer, “Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria,” Archives of Environmental Contamination and Toxicology, vol. 37, no. 2, pp. 158–163, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Chandran, A. A. M. Hatha, S. Varghese, and K. M. Sheeja, “Prevalence of multiple drug resistant Escherichia coli serotypes in a tropical estuary, India,” Microbes and Environments, vol. 23, no. 2, pp. 153–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. V. Nguyen, P. V. Le, C. H. Le, and A. Weintraub, “Antibiotic resistance in diarrheagenic Escherichia coli and Shigella strains isolated from children in Hanoi, Vietnam,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 2, pp. 816–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Ruiz, F. Marco, P. Goni et al., “High frequency of mutations at codon 83 of the gyrA gene of quinolone-resistant clinical isolates of Escherichia coli,” Journal of Antimicrobial Chemotherapy, vol. 36, no. 4, pp. 737–738, 1995. View at Google Scholar · View at Scopus
  24. M. Del Mar Tavío, J. Vila, J. Ruiz, J. Ruiz, A. M. Martín-Sánchez, and M. T. Jiménez De Anta, “Mechanisms involved in the development of resistance to fluoroquinolones in Escherichia coli isolates,” Journal of Antimicrobial Chemotherapy, vol. 44, no. 6, pp. 735–742, 1999. View at Google Scholar · View at Scopus
  25. J. Vila, J. Ruiz, F. Marco et al., “Association between double mutation in gyrA gene of ciprofloxacin- resistant clinical isolates of Escherichia coli and MICs,” Antimicrobial Agents and Chemotherapy, vol. 38, no. 10, pp. 2477–2479, 1994. View at Google Scholar · View at Scopus
  26. F. M. Aarestrup, “Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals,” International Journal of Antimicrobial Agents, vol. 12, no. 4, pp. 279–285, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Mora, J. E. Blanco, M. Blanco et al., “Antimicrobial resistance of Shiga toxin (verotoxin)-producing Escherichia coli O157:H7 and non-O157 strains isolated from humans, cattle, sheep and food in Spain,” Research in Microbiology, vol. 156, no. 7, pp. 793–806, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. G. D. Recchia and R. M. Hall, “Gene cassettes: a new class of mobile element,” Microbiology, vol. 141, no. 12, pp. 3015–3027, 1995. View at Google Scholar · View at Scopus
  29. P. Huovinen, L. Sundstrom, G. Swedberg, and O. Skold, “Trimethoprim and sulfonamide resistance,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 2, pp. 279–289, 1995. View at Google Scholar · View at Scopus
  30. P. A. White, C. J. McIver, and W. D. Rawlinson, “Integrons and gene cassettes in the Enterobacteriaceae,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 9, pp. 2658–2661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Singh, C. M. Schroeder, J. Meng et al., “Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 1, pp. 216–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. B. W. Shaheen, O. A. Oyarzabal, and D. M. Boothe, “The role of class 1 and 2 integrons in mediating antimicrobial resistance among canine and feline clinical E. coli isolates from the US,” Veterinary Microbiology, vol. 144, no. 3-4, pp. 363–370, 2010. View at Publisher · View at Google Scholar · View at Scopus