Table of Contents
ISRN Nutrition
Volume 2013 (2013), Article ID 270580, 8 pages
http://dx.doi.org/10.5402/2013/270580
Research Article

Bioavailability of Oil-Based and β-Lactoglobulin-Complexed Vitamin A in a Rat Model

Interdepartmental Program in Nutrition, Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA

Received 1 December 2012; Accepted 3 January 2013

Academic Editors: P. Crenn and F. Nassir

Copyright © 2013 Ying Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Ross, “Vitamin A,” in Modern Nutrition in Health and Disease, A. C. Ross, B. Caballero, R. J. Cousins, K. L. Tucker, and T. R. Zeigler, Eds., pp. 260–277, Lippincott, Williams and Wilkins, Philadelphia, Pa, USA, 11th edition, 2004. View at Google Scholar
  2. FDA, Department of Health and Human Services, Code of Federal Regulations 21 131.143, 1997.
  3. FDA, Department of Health and Human Services, Grade “A” Milk Ordinance. Code of Federal Regulations 21 131.110, 1994.
  4. T. Hicks, A. P. Hansen, and J. E. Rushing, “Procedures used by North Carolina dairies for vitamins A and D fortification of milk,” Journal of Dairy Science, vol. 79, no. 2, pp. 329–333, 1996. View at Google Scholar · View at Scopus
  5. J. T. Tanner, J. Smith, P. Defibaugh et al., “Survey of vitamin content of fortified milk,” Journal of the Association of Official Analytical Chemists, vol. 71, no. 3, pp. 607–610, 1988. View at Google Scholar · View at Scopus
  6. M. D. Perez, L. Sanchez, P. Aranda, J. M. Ena, R. Oria, and M. Calvo, “Synthesis and evolution of concentration of β-lactoglobulin and α-lactalbumin from cow and sheep colostrum and milk throughout early lactation,” Cellular and Molecular Biology, vol. 36, no. 2, pp. 205–212, 1990. View at Google Scholar · View at Scopus
  7. A. Belatik, C. D. Kanakis, S. Hotchandani, P. A. Tarantilis, M. G. Polissiou, and H. A. Tajmir-Riahi, “Locating the binding sites of retinol and retinoic acid with milk β-lactoglobulin,” Journal of Biomolecular Structure & Dynamics, vol. 30, pp. 437–447, 2012. View at Google Scholar
  8. S. Pervaiz and K. Brew, “Homology of β-lactoglobulin, serum retinol-binding protein, and protein HC,” Science, vol. 228, no. 4697, pp. 335–337, 1985. View at Google Scholar · View at Scopus
  9. M. Z. Papiz, L. Sawyer, and E. E. Eliopoulos, “The structure of β-lactoglubulin and its similarity to plasma retinol-binding protein,” Nature, vol. 324, no. 6095, pp. 383–385, 1986. View at Google Scholar · View at Scopus
  10. Q. Wang, J. C. Allen, and H. E. Swaisgood, “Binding of lipophilic nutrients to β-lactoglobulin prepared by bioselective adsorption,” Journal of Dairy Science, vol. 82, no. 2, pp. 257–264, 1999. View at Google Scholar · View at Scopus
  11. G. Kontopidis, C. Holt, and L. Sawyer, “The ligand-binding site of bovine β-lactoglobulin: evidence for a function?” Journal of Molecular Biology, vol. 318, no. 4, pp. 1043–1055, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Kontopidis, C. Holt, and L. Sawyer, “Invited review: β-lactoglobulin: binding properties, structure, and function,” Journal of Dairy Science, vol. 87, no. 4, pp. 785–796, 2004. View at Google Scholar · View at Scopus
  13. P. G. Reeves, F. H. Nielsen, and G. C. Fahey, “AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet,” Journal of Nutrition, vol. 123, no. 11, pp. 1939–1951, 1993. View at Google Scholar · View at Scopus
  14. R. A. Heddleson, J. C. Allen, Q. Wang, and H. E. Swaisgood, “Purity and yield of β-lactoglobulin isolated by an N-Retinyl-Celite bioaffinity column,” Journal of Agricultural and Food Chemistry, vol. 45, no. 7, 1997. View at Google Scholar · View at Scopus
  15. Q. Wang, J. C. Allen, and H. E. Swaisgood, “Binding of retinoids to β-lactoglobulin isolated by bioselective adsorption,” Journal of Dairy Science, vol. 80, no. 6, pp. 1047–1053, 1997. View at Google Scholar · View at Scopus
  16. E. Dufour, M. C. Marden, and T. Haertle, “β-Lactoglobulin binds retinol and protoporphyrin IX at two different binding sites,” FEBS Letters, vol. 277, no. 1-2, pp. 223–226, 1990. View at Publisher · View at Google Scholar · View at Scopus
  17. K. S. Sharpless and D. L. Duewer, “Population distributions and intralaboratory reproducibility for fat-soluble vitamin-related compounds in human serum,” Analytical Chemistry, vol. 67, no. 23, pp. 4416–4422, 1995. View at Google Scholar · View at Scopus
  18. J. J. Shaw, Bioavailability of oil-based and β-lactoglobulin complexed vitamin A in a rat model [M.S. thesis], NC State University, Raleigh, NC, USA, 2000.
  19. G. Ruotolo, H. Zhang, V. Bentsianov, and N. A. Le, “Protocol for the study of the metabolism of retinyl esters in plasma lipoproteins during postprandial lipemia,” Journal of Lipid Research, vol. 33, no. 10, pp. 1541–1549, 1992. View at Google Scholar · View at Scopus
  20. J. E. Smith, “Preparation of vitamin A-deficient rats and mice,” Methods in Enzymology, vol. 190, pp. 229–236, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. V. A. Hicks, D. B. Gunning, and J. A. Olson, “Metabolism, plasma transport and biliary excretion of radioactive vitamin A and its metabolites as a function of liver reserves of vitamin A in the rat,” Journal of Nutrition, vol. 114, no. 7, pp. 1327–1333, 1984. View at Google Scholar · View at Scopus
  22. J. L. Smith, J. E. Canham, W. D. Kirkland, and P. A. Wells, “Effect of Intralipid, amino acids, container, temperature, and duration of storage on vitamin stability in total parenteral feeding nutrition admixtures,” Journal of Parenteral and Enteral Nutrition, vol. 12, no. 5, pp. 478–483, 1988. View at Google Scholar · View at Scopus
  23. E. M. Paredes, The effect of polymeric packaging materials upon vitamin A and D losses from fluid non-fat milk [M.S. thesis], NC State University, Raleigh, NC, USA, 1996.
  24. M. Zahar, D. E. Smith, and J. J. Warthesen, “Factors related to the light stability of vitamin A in various carriers,” Journal of Dairy Science, vol. 70, no. 1, pp. 13–19, 1987. View at Google Scholar · View at Scopus
  25. H. L. Monaco, G. Zanotti, P. Spadon, M. Bolognesi, L. Sawyer, and E. E. Eliopoulos, “Crystal structure of the trigonal form of bovine beta-lactoglobulin and of its complex with retinol at 2.5 Å resolution,” Journal of Molecular Biology, vol. 197, no. 4, pp. 695–706, 1987. View at Google Scholar · View at Scopus
  26. S. Muresan, A. D. Van Bent, and F. A. De Wolf, “Interaction of β-lactoglobulin with small hydrophobic ligands as monitored by fluorometry and equilibrium dialysis: nonlinear quenching effects related to protein-protein association,” Journal of Agricultural and Food Chemistry, vol. 49, no. 5, pp. 2609–2618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Puyol, M. D. Perez, J. M. Ena, and M. Calvo, “Interaction of b-lactoglobulin and other bovine and human whey proteins with retinol and fatty acids,” Agricultural and Biological Chemistry, vol. 10, pp. 2515–2520, 1991. View at Google Scholar
  28. L. Sawyer, M. Z. Papiz, and A. C. T. North Eliopoulos E, “Structure and function of bovine β-lactoglobulin,” Biochemical Society Transactions, vol. 13, pp. 265–266, 1985. View at Google Scholar
  29. S. Y. Wu, M. D. Pérez, P. Puyol, and L. Sawyer, “β-Lactoglobulin binds palmitate within its central cavity,” Journal of Biological Chemistry, vol. 274, no. 1, pp. 170–174, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Van Bennekum, W. S. Blaner, I. Seifert-Bock, M. Moukides, A. Brouwer, and H. F. J. Hendriks, “Retinol uptake from retinol-binding protein (RBP) by liver parenchymal cells in vitro does not specifically depend on its binding to RBP,” Biochemistry, vol. 32, no. 7, pp. 1727–1733, 1993. View at Google Scholar · View at Scopus
  31. J. Godovac-Zimmermann, “The structural motif of β-lactoglobulin and retinol-binding protein: a basic framework for binding and transport of small hydrophobic molecules?” Trends in Biochemical Sciences, vol. 13, no. 2, pp. 64–66, 1988. View at Google Scholar · View at Scopus
  32. L. Riihimäki, A. Galkin, M. Finel et al., “Transport properties of bovine and reindeer β-lactoglobulin in the Caco-2 cell model,” International Journal of Pharmaceutics, vol. 347, no. 1-2, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. C. Yang, N. C. Chen, C. J. Chen, C. Y. Wu, and S. J. T. Mao, “Evidence for β-lactoglobulin involvement in vitamin D transport in vivo-role of the γ-turn (Leu-Pro-Met) of β-lactoglobulin in vitamin D binding,” FEBS Journal, vol. 276, no. 8, pp. 2251–2265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. E. Dew and D. E. Ong, “Absorption of retinol from the retinol:retinol-binding protein complex by small intestinal gut sheets from the rat,” Archives of Biochemistry and Biophysics, vol. 338, no. 2, pp. 233–236, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. H. M. Said, D. E. Ong, and J. L. Shingleton, “Intestinal uptake of retinol: enhancement by bovine milk β-lactoglobulin,” American Journal of Clinical Nutrition, vol. 49, no. 4, pp. 690–694, 1989. View at Google Scholar · View at Scopus
  36. I. M. Reddy, N. K. D. Kella, and J. E. Kinsella, “Structural and conformational basis of the resistance of β-lactoglobulin to peptic and chymotryptic digestion,” Journal of Agricultural and Food Chemistry, vol. 36, no. 4, pp. 737–741, 1988. View at Google Scholar · View at Scopus