ISRN Analytical Chemistry

Volume 2013 (2013), Article ID 592971, 11 pages

http://dx.doi.org/10.1155/2013/592971

## Calculation of the Absorption Cross Sections of Some Molecules from GEISA Database at the Wavelengths of Isotopically Different CO_{2} Lasers

^{1}Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russia^{2}Novosibirsk State University, Novosibirsk 630090, Russia

Received 8 July 2013; Accepted 19 September 2013

Academic Editors: J. A. Lopes and Y. van der Burgt

Copyright © 2013 Asylkhan Rakhymzhan and Alexey Chichinin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

A calculation of the absorption cross section of some molecules (NH_{3}, C_{2}H_{4}, CO_{2}, O_{3}, NO_{2}, PH_{3}, HNO_{3}, SF_{6}, CH_{3}OH, HCOOH, OCS, CH_{3}CN, C_{2}H_{6}, SO_{2}, and H_{2}O) at the wavelengths transmitted by a CO_{2} laser filled with different isotopes (^{12}C^{16}O_{2}, ^{13}C^{16}O_{2}, ^{12}C^{18}O_{2}, ^{14}C^{16}O_{2}, ^{14}C^{18}O_{2}, ^{13}C^{18}O_{2}, and ^{12}C^{16}O^{18}O) is presented. The spectroscopical parameters for the molecules from GEISA database have been used. Hence the selection of the molecules was substantially based on the availability of the parameters in the database. The results of the calculations may be used in designing the differential absorption technique for remote monitoring of these molecules. The pressure and temperature dependence of the cross sections are described by and coefficients; these coefficients were calculated for the largest absorption cross sections for each molecule. The absorption cross sections of CH_{3}OH and HCOOH at low pressures for all these CO_{2} lasers are also presented. These calculations are provided for design of new CO_{2}-laser-pumped far-infrared lasers.

#### 1. Introduction

In this paper we report molecular absorption cross sections at CO_{2}-laser emission frequencies for several selected gases of atmospheric relevance (M = NH_{3}, C_{2}H_{4}, CO_{2}, O_{3}, NO_{2}, PH_{3}, HNO_{3}, SF_{6}, CH_{3}OH, HCOOH, OCS, CH_{3}CN, C_{2}H_{6}, SO_{2}, and H_{2}O). This information may be useful mainly in the differential absorption (Light Detection and Ranging) LIDAR technique for remote measurement of the gas species [1–8] and also may be used to monitor the CO_{2} content in fuel combustion products [9], remote sensing of gases in human breath [10], or multiphoton dissociation processes or to measure water vapor concentration and wind speed vector in the plume of volcano [11, 12]. Note that the LIDAR technique sometimes is used for remote sensing of some exotic gases, like, for example, chemical warfare [13].

In some cases (CH_{3}OH and HCOOH) it also may be used in designing optically pumped FIR (far infrared=THz) lasers where CO_{2} laser is used as a source of a pump radiation [14]. Also, the absorption of CO_{2}-laser radiation by a cell with a mixture of some of these gases is used in our lab for quick check and assignment of the CO_{2}-laser lines.

The focus of the present study is to predict absorption cross section in pure air at wavelengths of seven isotopic CO_{2} lasers: ^{12}C^{16}O_{2} (normal), ^{13}C^{16}O_{2}, ^{12}C^{18}O_{2}, ^{14}C^{16}O_{2}, ^{14}C^{18}O_{2}, ^{13}C^{18}O_{2}, and ^{12}C^{16}O^{18}O, which we hereafter denote as 26-, 36-, 28-, 46-, 48-, 38-, and 268-lasers.

In the clear atmosphere, absorption at 9–11 *μ*m is due primarily to water vapor and carbon dioxide. Since the fraction of CO_{2} in the atmosphere is about 3.8 × 10^{−4} and (CO_{2})~10^{−22} cm^{2}, the resonant absorption of 50% of the 26-laser radiation by atmospheric molecules occurs at the distance about 7 km. This distance may be not large enough for typical LIDAR applications, like monitoring of air pollution over the large town or early detection of small forest fires [15, 16]. Also, the fluctuations of the CO_{2} concentration in the atmosphere decrease strongly the accuracy of the LIDAR based on the 26-laser. Hence the first advantage of latter six CO_{2} lasers over conventional 26-laser is low attenuation from atmospheric CO_{2}, which may extend strongly the detection distance and/or the accuracy of the LIDAR. Moreover, these isotopically substituted CO_{2} lasers may be used to detect the concentration of CO_{2} in the atmosphere or, more simply, to monitor the CO_{2} content in fuel combustion products [9].

Another advantage is another set of wavelengths; sometimes it makes it possible to detect molecules, unavailable for conventional 26-laser LIDAR.

It is important to note that the use of CO_{2} lasers for LIDAR remote sensing offers some advantages over that of the more current LIDAR experiments being conducted using the fundamental absorption transitions of hydrocarbons near 3 to 4 *μ*m and CW Quantum Cascade Lasers, in that the absorption values near 10 *μ*m are not too high and not too low for remote sensing at ranges of a few hundred meters, and the output power of the CO_{2} laser is high offering good detection ranges.

Note that commercially available CO_{2} lasers often may be filled with different isotopic gases (e.g., PL3 series from Edinburgh Photonics). Also, CO_{2} lasers make up to 10^{8} shots without changing of the gas mixture (e.g., InfraLight series of CO_{2} lasers); hence there is no large difference, which isotopic modification of CO_{2} gas to use.

This work was greatly facilitated by usage of GEISA spectroscopical database [17], and only the molecules from the database were involved in calculations. We have not included several gases (N_{2}H_{4}, C_{6}H_{6}, C_{2}Cl_{4}, C_{2}HCl_{3}, C_{2}H_{3}Cl, C_{2}H_{5}SH, C_{2}H_{4}Cl_{2}, CF_{2}Cl_{2}, and CFCl_{3}) which may be detected by CO_{2} lasers [18], since no information is available on their absorption cross sections in the GEISA and HITRAN databases.

There were a lot of experimental measurements of the absorption coefficients at 26-laser frequencies. The most popular molecules are SF_{6} [19–21], C_{2}H_{4} [22–24], and NH_{3} [22–26], and the list of references here is very large. A lot of for more complicated molecules are also reported in the literature, for example, for acetonitrile, benzene, cyclohexane, 1,2-dichloroethane, ethyl acetate, freon-12, freon-113, furan, isopropanol, methyl chloroform, methyl ethyl ketone, -butanol, vinyl chloride, and iodopropane [27]; seven hydrazine fuel gases [28]; hydrazine, unsymmetrical dimethylhydrazine, and monomethylhydrazine [29]; C_{2}H_{4}, C_{2}H_{3}Cl_{3}, C_{2}HCl_{3}, and Freon-113 [3]; and triacetone triperoxide [8].

However, much less information is available regarding of CO_{2} lasers other than 26-laser. For example, we know the measurements of (H_{2}O) at 26-, 36-, and 46-laser wavelengths [30], (ClO_{2}) at 28-laser wavelengths [31], (NH_{3}) at a 36-laser [32]. Also, the photoacoustic spectroscopy has been used to determine for M = NH_{3}, CCl_{2}F_{2}, CHClF_{2}, CFCl_{3}, and CClF_{3} at 36-laser wavelengths [33].

To the best of our knowledge, the FIR lasers normally are pumped by 26-lasers or, much rarely, by 36-laser [34–37]; the other CO_{2} lasers are used very rarely [38, 39]. Note that while 26-laser has about 100 laser lines, using different isotopic CO_{2} lasers gives up to 1000 lines; hence the amount of different FIR-lasers pumped by CO_{2} lasers should increase accordingly.

With this in mind, we performed the calculation which hopefully provides the information of the quality comparable with that of the experimental studies. We hope that it will stimulate using isotopically different CO_{2} lasers for different applications.

#### 2. Results

Assuming Lorentzian line shapes, we calculated the absorption cross sections at all possible CO_{2}-laser frequencies. Tables 1, 2, and 3 show for 26-, 36-, and 28-lasers, respectively, for CO_{2}-laser lines between P(40) and R(40), excluding the range P(6)–R(6). Atmospheric pressure bar and temperature K are assumed everywhere, and the self-broadening is neglected (i.e., [M]≪[air]). The following expressions were used:
where the index labels all transitions in molecule , is intensity of the th spectral line, , is Lorentzian width, , is the absorption maximum frequency of the th spectral line, is the pressure shift of the line transition, is the energy of the lower state for th transition, for linear molecules like CO_{2} and for nonlinear molecules, and are air pressure and temperature, respectively, and is Boltzmann constant.

The parameters , , , , , and are taken from GEISA database for each transition of each M molecule. Note that the pressure shifts are given in the database only for CH_{3}CN and NO_{2} molecules. All of them are rather small (*≈*10^{−3} cm^{−1}/atm), and they change only the third digit in calculated absorption cross sections. We hope that there is the same situation with all other molecules; hence we present the cross sections with three-digit accuracy; the last digit may be wrong due to the pressure shifts. All CO_{2}-laser frequencies were taken from Freed et al. [40].

In Table 4 we present the “best” laser transitions for each isotopic variation of CO_{2} laser and for each molecule M. The pressure and temperature dependence of the cross sections are described by and coefficients as , , and the coefficients have been calculated from (1) and presented in Table 4 also.

It is not easy task to point out the “best” CO_{2}-laser line for detection of molecule M. Normally the “best” CO_{2}-laser line should lie in the ranges R(10)–R(40), P(10)–P(40) and has the largest absorption by M molecules; if the largest values occur outside these ranges, we mark it by asterisk shown in the table also. However, if the largest values occur at marginal lines of CO_{2} laser and are much larger than all other cross sections, we present this marginal line only.

#### 3. Discussion

Some of our results are compared with the experimental literature data in Table 5. As one can see from the table, the present results agree favorably with the experimental data of Patty et al. [24] and Persson et al. [22], who have determined , , and coefficients for 26-laser absorption by NH_{3}, O_{3}, and C_{2}H_{4} molecules.

Note that only in several cases our M molecules are important as “standard” air pollutant (NH_{3}, C_{2}H_{4}, PH_{3}, and O_{3}) and in other cases our M molecules may happen in the air only near special industrial objects. As one can see from Tables 1–4, 26-laser is a good choice for all these four gases.

There are several advantages of the other CO_{2} lasers: monitoring of HNO_{3}, NO_{2}, C_{2}H_{6}, and CO_{2} molecules requires 46-/48-/36-, 36-, 36-/46-/48-, and 38-/268-lasers, respectively, instead of 26-laser.

We included in Table 4 several molecules with low cross sections (OCS, CH_{3}CN, C_{2}H_{6}, SO_{2}, and NO_{2}). Although CO_{2} laser is not the best choice to detect these molecules, these data may be useful in special cases, for example, when CO_{2} LIDAR is used to monitor the leakage of these gases from industrial areas.

Surely, the data in all our tables are only starting points in discussion about applicability of particular CO_{2}-laser transitions for remote sensing under atmospheric conditions, because at many wavenumbers, the absorption by H_{2}O may be much stronger than absorption by the gases of interest. Hence one always should find the tradeoff between the absorption of H_{2}O and the absorption of these gases.

For example, the “best” line for NH_{3} detection by 26-laser in Table 4 is 10R(30) with (NH_{3}) = 303 × 10^{−20} cm^{2}. However, at this wavelength, the ratio (NH_{3})/(H_{2}O) is only 4.4 × 10^{5}. If we choose another 26-laser line for NH_{3} detection, P(34) (931.0014 cm^{−1}) with (NH_{3}) = 55.2 × 10^{−20} cm^{2} and (H_{2}O) = 0.0023 × 10^{−23} cm^{2}, the ratio will be much higher: (NH_{3})/(H_{2}O) = 2.4 × 10^{7}. Hence, this another 26-laser line is better for NH_{3} detection, although the value (NH_{3}) is lower.

Therefore, we included H_{2}O in our calculations; see the results in Tables 1, 2, and 3. Our (H_{2}O) data in the tables should help to choose the “best” pairs of CO_{2}-laser lines (absorbing and nonabsorbing) for remote sensing of the gases of interest. Note that the pair of CO_{2}-laser wavenumbers may originate from two isotopically different CO_{2} lasers; therefore the possibility to use many isotopic variations of CO_{2} laser simplifies strongly the choice of such pairs.

#### 4. Application to FIR Lasers

There are several important benchmark molecules which are normally used in CO_{2}-laser-pumped FIR lasers: CH_{3}OH, CH_{2}F_{2}, HCOOH, ^{15}NH_{3}, CD_{3}OD, CD_{3} OH, CD_{3}Cl, ^{13}CD_{3}I, and ^{13}CH_{3}F. The absorption of CO_{2} radiation by these molecules results in FIR-laser emission. Table 6 lists our values for CH_{3}OH and HCOOH at low pressures, where the shapes of spectral lines of these molecules are given by Doppler effect. As one can see, there are a lot of interesting possibilities to obtain new strong sources of FIR radiation. One of them may be 9R(19) line of 268-laser, which has very large (HCOOH) value.

Although there is no direct relation between intensities of CO_{2} absorption and FIR emission, it is clear that using 1000 CO_{2}-laser lines instead of 100–200 should increase strongly the amount of strong FIR-laser transitions.

#### 5. Conclusion

The absorption cross sections and and parameters of some molecules (NH_{3}, C_{2}H_{4}, CO_{2}, O_{3}, NO_{2}, PH_{3}, HNO_{3}, SF_{6}, CH_{3}OH, HCOOH, OCS, CH_{3}CN, C_{2}H_{6}, SO_{2}, and H_{2}O) at CO_{2} laser frequencies (^{12}C^{16}O_{2},^{13}C^{16}O_{2}, ^{12}C^{18}O_{2}, ^{14}C^{16}O_{2}, ^{14}C^{18}O_{2}, ^{13}C^{18}O_{2}, and ^{12}C^{16}O^{18}O) have been calculated with the use of spectroscopical parameters from GEISA database. The present results are in reasonable agreement with other experimental measurements for NH_{3}, O_{3}, and C_{2}H_{4}. The results of the calculations may be used in designing the differential absorption technique for remote monitoring of these molecules.

#### References

- C. Weitkamp,
*Lidar Range-Resolved Optical Remote Sencing of the Atmosphere*, Springer Science and Business Media Inc., 2005. - B. I. Vasil'ev and O. M. Mannoun, “IR differential-absorption lidars for ecological monitoring of the environment,”
*Quantum Electronics*, vol. 36, no. 9, pp. 801–820, 2006. View at Publisher · View at Google Scholar · View at Scopus - J. R. Quagliano, P. O. Stoutland, R. R. Petrin et al., “Quantitative chemical identification of four gases in remote infrared (9–11
*μ*m) differential absorption lidar experiments,”*Applied Optics*, vol. 36, no. 9, pp. 1915–1927, 1997. View at Google Scholar · View at Scopus - S. Lundqvist, C. O. Falt, U. Persson, B. Marthinsson, and S. T. Eng, “Air pollution monitoring with a Q-switched CO
_{2}-laser lidar using heterodyne detection,”*Applied Optics*, vol. 20, no. 14, pp. 2534–2538, 1981. View at Google Scholar · View at Scopus - U. Persson, S. Lundqvist, B. Marthinsson, and S. T. Eng, “Computerautomated CO
_{2}-laser long-path absorption system for air quality monitoring in the working environment,”*Applied Optics*, vol. 23, no. 7, pp. 998–1002, 1984. View at Google Scholar · View at Scopus - W. Schnell and G. Fischer, “Carbon dioxide laser absorption coefficients of various air pollutants,”
*Applied Optics*, vol. 14, no. 9, pp. 2058–2059, 1975. View at Google Scholar · View at Scopus - A. Mayer, J. Comera, H. Charpentier, and C. Jaussaud, “Absorption coefficients of various pollutant gases at CO
_{2}laser wavelengths, application to the remote sensing of those pollutants: errata,”*Applied Optics*, vol. 17, no. 3, pp. 391–393, 1978. View at Google Scholar · View at Scopus - A. Pal, C. D. Clark, M. Sigman, and D. K. Killinger, “Differential absorption lidar CO
_{2}laser system for remote sensing of TATP related gases,”*Applied Optics*, vol. 48, no. 4, pp. B145–B150, 2009. View at Publisher · View at Google Scholar · View at Scopus - K. I. Arshinov, M. K. Arshinov, V. V. Nevdakh, M.-Y. Perrin, A. Soufiani, and V. V. Yasnov, “Accuracy in determination of the temperature and partial pressure of CO
_{2}in CO_{2}:N_{2}:H_{2}O:NO_{2}mixtures by multiple-frequency laser probing,”*Journal of Applied Spectroscopy*, vol. 74, no. 6, pp. 903–909, 2007. View at Publisher · View at Google Scholar · View at Scopus - M. Hamza, M. H. S. El-Ahl, and A. M. Hamza, “New laser system for sensitive remote sensing of ammonia in human breath,” in
*Proceedings of the Air Monitoring and Detection of Chemical and Biological Agents II*, vol. 3855 of*Proceedings of SPIE*, pp. 28–33, September 1999. View at Scopus - L. Fiorani, F. Colao, and A. Palucci, “Measurement of Mount Etna plume by CO
_{2}-laser-based lidar,”*Optics Letters*, vol. 34, no. 6, pp. 800–802, 2009. View at Publisher · View at Google Scholar · View at Scopus - L. Fiorani, F. Colao, A. Palucci, D. Poreh, A. Aiuppa, and G. Giudice, “First-time lidar measurement of water vapor flux in a volcanic plume,”
*Optics Communications*, vol. 284, no. 5, pp. 1295–1298, 2011. View at Publisher · View at Google Scholar · View at Scopus - P. P. Geiko and A. Tikhomirov, “Remote measurement of chemical warfare agents by differential absorption CO
_{2}lidar,”*Optical Memory and Neural Networks*, vol. 20, no. 1, pp. 71–75, 2011. View at Publisher · View at Google Scholar · View at Scopus - E. M. Telles, H. Odashima, L. R. Zink, and K. M. Evenson, “Optically pumped FIR laser lines from CH
_{3}OH: new laser lines, frequency measurements, and assignments,”*Journal of Molecular Spectroscopy*, vol. 195, no. 2, pp. 360–366, 1999. View at Google Scholar · View at Scopus - C. Bellecci, M. Francucci, P. Gaudio et al., “Application of a CO
_{2}dial system for infrared detection of forest fire and reduction of false alarm,”*Applied Physics B*, vol. 87, no. 2, pp. 373–378, 2007. View at Publisher · View at Google Scholar · View at Scopus - P. Gaudio, M. Gelfusa, I. Lupelli et al., “First open field measurements with a portable CO
_{2}lidar/dial system for early forest fires detection,” in*Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII*, September 2011. View at Publisher · View at Google Scholar · View at Scopus - N. Jacquinet-Husson, L. Crepeau, R. Armante et al., “The 2009 edition of the GEISA spectroscopic database,”
*Journal of Quantitative Spectroscopy and Radiative Transfer*, vol. 112, no. 15, pp. 2395–2445, 2011. View at Publisher · View at Google Scholar · View at Scopus - L. F. Chernogor and A. S. Rashkevich, “Results of en-route monitoring of the laser gas polluting impurities in the atmosphere,”
*Eastern European Journal of Enterprise Technologies*, vol. 52, article 57, 1987. View at Google Scholar - K. Fox, “Strengths of the SF6 transitions pumped by a CO
_{2}laser,”*Optics Communications*, vol. 19, no. 3, pp. 397–400, 1976. View at Google Scholar · View at Scopus - J. L. Lyman, R. G. Anderson, R. A. Fisher, and B. J. Feldman, “Absorption of pulsed CO
_{2}-laser radiation by SF6 at 140 K,”*Optics Letters*, vol. 3, no. 6, pp. 238–240, 1978. View at Google Scholar · View at Scopus - H. Kariminezhad, P. Parvin, F. Borna, and A. Bavali, “SF6 leak detection of high-voltage installations using TEA-CO
_{2}laser-based DIAL,”*Optics and Lasers in Engineering*, vol. 48, no. 4, pp. 491–499, 2010. View at Publisher · View at Google Scholar · View at Scopus - U. Persson, B. Marthinsson, J. Johansson, and S. T. Eng, “Temperature and pressure dependence of NH
_{3}and C_{2}H_{4}absorption cross sections at CO_{2}laser wavelengths,”*Applied Optics*, vol. 19, no. 10, pp. 1711–1715, 1980. View at Google Scholar · View at Scopus - J. N. Olsen, “Laser-initiated channels for ion transport: CO
_{2}-laser absorption and heating of NH_{3}and C_{2}H_{4}gases,”*Journal of Applied Physics*, vol. 52, no. 5, pp. 3279–3285, 1981. View at Publisher · View at Google Scholar · View at Scopus - R. R. Patty, G. M. Russwurm, W. A. McClenny, and D. R. Morgan, “CO
_{2}laser absorption coefficients for determining ambient levels of O_{3}, NH_{3}, and C_{2}H_{4},”*Applied Optics*, vol. 13, no. 12, pp. 2850–2854, 1974. View at Google Scholar · View at Scopus - A. P. Force, D. K. Killinger, W. E. DeFeo, and N. Menyuk, “Laser remote sensing of atmospheric ammonia using a CO
_{2}lidar system,”*Applied Optics*, vol. 24, no. 17, pp. 2837–2841, 1985. View at Google Scholar · View at Scopus - Y. Zhao, “Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO
_{2}differential absorption lidar system,”*Applied Optics*, vol. 39, no. 6, pp. 997–1007, 2000. View at Google Scholar · View at Scopus - B. D. Green and J. I. Steinfeld, “Absorption coefficients for fourteen gases at CO
_{2}-laser frequencies,”*Applied Optics*, vol. 15, p. 1688, 1975. View at Google Scholar - L. T. Molina and W. B. Grant, “FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases—implications for laser remote sensing,”
*Applied Optics*, vol. 23, no. 21, pp. 3893–3900, 1983. View at Google Scholar · View at Scopus - N. Menyuk, D. K. Killinger, and W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO
_{2}lidar,”*Applied Optics*, vol. 21, no. 12, pp. 2275–2286, 1982. View at Google Scholar · View at Scopus - J. S. Ryan, M. H. Hubert, and R. A. Crane, “Water vapor absorption at isotopic CO
_{2}laser wavelengths,”*Applied Optics*, vol. 22, no. 5, pp. 711–717, 1983. View at Google Scholar · View at Scopus - H. Ahlberg, S. Lundqvist, and S. T. Eng, “Absorption coefficients of chlorine-dioxide
^{12}C^{18}0_{2}laser wavelengths: applications to remote monitoring in the working environment,”*Applied Optics*, vol. 23, no. 17, pp. 2902–2905, 1984. View at Google Scholar · View at Scopus - F. Allario and R. K. Seals Jr., “Measurements of NH
_{3}absorption coefficients with a^{13}C^{16}O_{2}laser,”*Applied Optics*, vol. 14, no. 9, pp. 2229–2233, 1975. View at Google Scholar · View at Scopus - Z. Zelinger, I. Jancik, and P. Engst, “Measurement of the NH
_{3}, CCl_{2}F_{2}, CHClF_{2}, CFCl_{3}, and CClF_{3}absorption coefficients at isotopic^{13}C^{16}O_{2}laser wavelengths by photoacoustic spectroscopy,”*Applied Optics*, vol. 31, p. 6974, 1992. View at Google Scholar - D. Pereira, A. Scalabrin, G. P. Galvão, and K. M. Evenson, “
^{13}CD^{3}OH and^{12}CD_{3}OH optically pumped by a^{13}CO_{2}laser: observations and assignments of FIR laser lines,”*International Journal of Infrared and Millimeter Waves*, vol. 13, no. 4, pp. 497–506, 1992. View at Publisher · View at Google Scholar · View at Scopus - L. F. L. Costa, J. C. S. Moraes, F. C. Cruz, R. C. Viscovini, and D. Pereira, “Infrared and far-infrared spectroscopy of
^{13}CH_{3}OH: teraHertz laser lines and assignments,”*Journal of Molecular Spectroscopy*, vol. 241, no. 2, pp. 151–154, 2007. View at Publisher · View at Google Scholar · View at Scopus - L. F. L. Costa, J. C. S. Moraes, F. C. Cruz, R. C. Viscovini, and D. Pereira, “CH
_{3}OH optically pumped by a^{13}CO_{2}laser: new laser lines and assignments,”*Applied Physics B*, vol. 86, no. 4, pp. 703–706, 2007. View at Publisher · View at Google Scholar · View at Scopus - R. C. Viscovini, J. C. S. Moraes, L. F. L. Costa, F. C. Cruz, and D. Pereira, “DCOOD optically pumped by a
^{13}CO_{2}laser: new terahertz laser lines,”*Applied Physics B*, vol. 91, no. 3-4, pp. 517–520, 2008. View at Publisher · View at Google Scholar · View at Scopus - J. C. Petersen and G. Duxbury, “Observation and assignment of submillimetre laser lines from CH
_{3}OH pumped by isotopic CO_{2}lasers,”*Applied Physics B*, vol. 27, no. 1, pp. 19–25, 1982. View at Publisher · View at Google Scholar · View at Scopus - J. C. Petersen and G. Duxbury, “Submillimetre laser lines from CH
_{3}OH pumped by a^{13}C^{18}O_{2}pump laser: observations and assignments,”*Applied Physics B*, vol. 34, no. 1, pp. 17–21, 1984. View at Publisher · View at Google Scholar · View at Scopus - C. Freed, L. C. Bradley, and R. G. O'Donnell, “Absolute frequencies of lasing transitions in seven CO
_{2}isotopic species,”*IEEE Journal of Quantum Electronics*, vol. 16, no. 11, pp. 1195–1206, 1980. View at Google Scholar · View at Scopus