Table of Contents
Journal of Amino Acids
Volume 2011, Article ID 785741, 12 pages
http://dx.doi.org/10.4061/2011/785741
Review Article

Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase

1Department of Biology, Alabama A&M University, P.O. Box 610, Normal, AL 35762, USA
2Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA

Received 15 February 2011; Accepted 21 April 2011

Academic Editor: Faizan Ahmad

Copyright © 2011 Zulfiqar Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Ahmad and T. F. Laughlin, “Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides,” Current Medicinal Chemistry, vol. 17, no. 25, pp. 2822–2836, 2010. View at Google Scholar
  2. A. E. Senior, S. Nadanaciva, and J. Weber, “The molecular mechanism of ATP synthesis by FF-ATP synthase,” Biochimica et Biophysica Acta, vol. 1553, no. 3, pp. 188–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. W. D. Frasch, “The participation of metals in the mechanism of the F-ATPase,” Biochimica et Biophysica Acta, vol. 1458, no. 2-3, pp. 310–325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. P. D. Boyer, “The ATP synthase—a splendid molecular machine,” Annual Review of Biochemistry, vol. 66, pp. 717–749, 1997. View at Google Scholar
  5. J. P. Abrahams, A. G. W. Leslie, R. Lutter, and J. E. Walker, “Structure at 2.8 Å resolution of F-ATPase from bovine heart mitochondria,” Nature, vol. 370, no. 6491, pp. 621–628, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Weber, “ATP synthase: subunit-subunit interactions in the stator stalk,” Biochimica et Biophysica Acta, vol. 1757, no. 9-10, pp. 1162–1170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Weber and A. E. Senior, “ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis,” Biochimica et Biophysica Acta, vol. 1458, no. 2-3, pp. 300–309, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Senior, S. Nadanaciva, and J. Weber, “Rate acceleration of ATP hydrolysis by FF(o)-ATP synthase,” Journal of Experimental Biology, vol. 203, no. 1, pp. 35–40, 2000. View at Google Scholar · View at Scopus
  9. R. K. Nakamoto, C. J. Ketchum, and M. K. al-Shawi, “Rotational coupling in the FF ATP synthase,” Annual Review of Biophysics and Biomolecular Structure, vol. 28, pp. 205–234, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. P. L. Pedersen, “Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease,” Journal of Bioenergetics and Biomembranes, vol. 39, no. 5-6, pp. 349–355, 2007. View at Google Scholar
  11. Z. Ahmad and A. E. Senior, “Identification of phosphate binding residues of Escherichia coli ATP synthase,” Journal of Bioenergetics and Biomembranes, vol. 37, no. 6, pp. 437–440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. E. Senior, “ATP synthase: motoring to the finish line,” Cell, vol. 130, no. 2, pp. 220–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Khan, “Rotary chemiosmotic machines,” Biochimica et Biophysica Acta, vol. 1322, no. 2-3, pp. 86–105, 1997. View at Google Scholar
  14. H. Noji and M. Yoshida, “The rotary machine in the cell, ATP synthase,” Journal of Biological Chemistry, vol. 276, no. 3, pp. 1665–1668, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Ren and W. S. Allison, “On what makes the γ subunit spin during ATP hydrolysis by F,” Biochimica et Biophysica Acta, vol. 1458, no. 2-3, pp. 221–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Weber and A. E. Senior, “ATP synthesis driven by proton transport in FF-ATP synthase,” FEBS Letters, vol. 545, no. 1, pp. 61–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Hong and P. L. Pedersen, “ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas,” Microbiology and Molecular Biology Reviews, vol. 72, no. 4, pp. 590–641, 2008. View at Google Scholar
  18. N. Chinnam, P. K. Dadi, S. A. Sabri, M. Ahmad, M. A. Kabir, and Z. Ahmad, “Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner,” International Journal of Biological Macromolecules, vol. 46, no. 5, pp. 478–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. K. Dadi, M. Ahmad, and Z. Ahmad, “Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols,” International Journal of Biological Macromolecules, vol. 45, no. 1, pp. 72–79, 2009. View at Google Scholar
  20. P. L. Pedersen, “The cancer cell's “power plants” as promising therapeutic targets: an overview,” Journal of Bioenergetics and Biomembranes, vol. 39, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. F. Laughlin and Z. Ahmad, “Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides,” International Journal of Biological Macromolecules, vol. 46, no. 3, pp. 367–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Gledhill, M. G. Montgomery, A. G. Leslie, and J. E. Walker, “Mechanism of inhibition of bovine F-ATPase by resveratrol and related polyphenols,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13632–13637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Zheng and V. D. Ramirez, “Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals,” British Journal of Pharmacology, vol. 130, no. 5, pp. 1115–1123, 2000. View at Google Scholar · View at Scopus
  24. J. Weber and A. E. Senior, “Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F-ATPase catalytic sites measured using specific tryptophan probes,” Journal of Biological Chemistry, vol. 273, no. 50, pp. 33210–33215, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Li, L. E. Brudecki, A. E. Senior, and Z. Ahmad, “Role of α-subunit VISIT-DG sequence residues Ser-347 and Gly-351 in the catalytic sites of Escherichia coli ATP synthase,” Journal of Biological Chemistry, vol. 284, no. 16, pp. 10747–10754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. W. Bowler, M. G. Montgomery, A. G. Leslie, and J. E. Walker, “How azide inhibits ATP hydrolysis by the F-ATPases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 23, pp. 8646–8649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. C. Frasch, J. J. Cazzulo, and A. O. Stoppani, “Solubilization and some properties of the Mg-activated adenosine triphosphatase from Trypanosoma cruzi,” Comparative Biochemistry and Physiology B, vol. 61, no. 2, pp. 207–212, 1978. View at Google Scholar · View at Scopus
  28. J. Hermolin and R. H. Fillingame, “H-ATPase activity of Escherichia coli FF is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F complex,” Journal of Biological Chemistry, vol. 264, no. 7, pp. 3896–3903, 1989. View at Google Scholar · View at Scopus
  29. M. Tommasino and R. A. Capaldi, “Effect of dicyclohexylcarbodiimide on unisite and multisite catalytic activities of the adenosinetriphosphatase of Escherichia coli,” Biochemistry, vol. 24, no. 15, pp. 3972–3976, 1985. View at Google Scholar · View at Scopus
  30. N. Yarlett and D. Lloyd, “Effects of inhibitors on mitochondrial adenosine triphosphatase of Crithidia fasciculata: an unusual pattern of specificities,” Molecular and Biochemical Parasitology, vol. 3, no. 1, pp. 13–17, 1981. View at Google Scholar · View at Scopus
  31. M. Yoshida, W. S. Allison, F. S. Esch, and M. Futai, “The specificity of carboxyl group modification during the inactivation of the Escherichia coli F-ATPase with dicyclohexyl[C]carbodiimide,” Journal of Biological Chemistry, vol. 257, no. 17, pp. 10033–10037, 1982. View at Google Scholar · View at Scopus
  32. T. V. Zharova and A. D. Vinogradov, “Energy-dependent Transformation of F0.F1-ATPase in Paracoccus denitrificans Plasma Membranes,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12319–12324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. P. Abrahams, S. K. Buchanan, M. J. Van Raaij, I. M. Fearnley, A. G. Leslie, and J. E. Walker, “The structure of bovine F-ATPase complexed with the peptide antibiotic efrapeptin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9420–9424, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. J. R. Gledhill, M. G. Montgomery, A. G. Leslie, and J. E. Walker, “How the regulatory protein, IF, inhibits F-ATPase from bovine mitochondria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15671–15676, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Lardy, P. Reed, and C. H. Lin, “Antibiotic inhibitors of mitochondrial ATP synthesis,” Federation Proceedings, vol. 34, no. 8, pp. 1707–1710, 1975. View at Google Scholar · View at Scopus
  36. F. Sicheri, I. Moarefi, and J. Kuriyan, “Crystal structure of the Src family tyrosine kinase Hck,” Nature, vol. 385, no. 6617, pp. 602–609, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. E. H. Walker, M. E. Pacold, O. Perisic et al., “Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine,” Molecular Cell, vol. 6, no. 4, pp. 909–919, 2000. View at Google Scholar · View at Scopus
  38. D. A. Bullough, E. A. Ceccarelli, D. Roise, and W. S. Allison, “Inhibition of the bovine-heart mitochondrial F-ATPase by cationic dyes and amphipathic peptides,” Biochimica et Biophysica Acta, vol. 975, no. 3, pp. 377–383, 1989. View at Google Scholar · View at Scopus
  39. J. R. Gledhill and J. E. Walker, “Inhibition in F-ATPase from bovine heart mitochondria,” Biochemical Journal, vol. 386, no. 3, pp. 591–598, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Wang and G. Wang, “APD: the antimicrobial peptide database,” Nucleic Acids Research, vol. 32, pp. D590–D592, 2004. View at Google Scholar · View at Scopus
  41. M. Zasloff, “Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 15, pp. 5449–5453, 1987. View at Google Scholar · View at Scopus
  42. M. Zasloff, “Antimicrobial peptides of multicellular organisms,” Nature, vol. 415, no. 6870, pp. 389–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. H.-D. Jakubke and N. Sewald, Peptides from A to Z: A Concise Encyclopedia, Wiley-VCH, Weinheim, Germany, 2008.
  44. M. Iwadate, T. Asakura, and M. P. Williamson, “The structure of the melittin tetramer at different temperatures: an NOE-based calculation with chemical shift refinement,” European Journal of Biochemistry, vol. 257, no. 2, pp. 479–487, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Roise, S. J. Horvath, J. M. Tomich, J. H. Richards, and G. Schatz, “A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers,” The EMBO journal, vol. 5, no. 6, pp. 1327–1334, 1986. View at Google Scholar · View at Scopus
  46. D. Roise, F. Theiler, S. J. Horvath et al., “Amphiphilicity is essential for mitochondrial presequence function,” The EMBO Journal, vol. 7, no. 3, pp. 649–653, 1988. View at Google Scholar · View at Scopus
  47. T. C. Terwilliger and D. Eisenberg, “The structure of melittin. I. Structure determination and partial refinement,” Journal of Biological Chemistry, vol. 257, no. 11, pp. 6010–6015, 1982. View at Google Scholar · View at Scopus
  48. Z. Ahmad and A. E. Senior, “Mutagenesis of residue βArg-246 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F-ATPase,” Journal of Biological Chemistry, vol. 279, no. 30, pp. 31505–31513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. M. K. Al-Shawi, C. J. Ketchum, and R. K. Nakamoto, “The Escherichia coli F0F1γM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway,” Biochemistry, vol. 36, no. 42, pp. 12961–12969, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. M. K. al-Shawi and A. E. Senior, “Effects of Dimethyl Sulfoxide on catalysis in Escherichia coli F-ATPaSe,” Biochemistry, vol. 31, no. 3, pp. 886–891, 1992. View at Google Scholar · View at Scopus
  51. P. D. Boyer, “A perspective of the binding change mechanism for ATP synthesis,” The FASEB Journal, vol. 3, no. 10, pp. 2164–2178, 1989. View at Google Scholar · View at Scopus
  52. T. Masaike, E. Muneyuki, H. Noji, K. Kinosita, and M. Yoshida, “F-ATPase changes its conformations upon phosphate release,” Journal of Biological Chemistry, vol. 277, no. 24, pp. 21643–21649, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Rosing, C. Kayalar, and P. D. Boyer, “Evidence for energy dependent change in phosphate binding for mitochondrial oxidative phosphorylation based on measurements of medium and intermediate phosphate water exchanges,” Journal of Biological Chemistry, vol. 252, no. 8, pp. 2478–2485, 1977. View at Google Scholar · View at Scopus
  54. R. J. Devenish, M. Prescott, X. Roucou, and P. Nagley, “Insights into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex,” Biochimica et Biophysica Acta, vol. 1458, no. 2-3, pp. 428–442, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Karrasch and J. E. Walker, “Novel features in the structure of bovine ATP synthase,” Journal of Molecular Biology, vol. 290, no. 2, pp. 379–384, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. A. E. Senior, “ATP synthesis by oxidative phosphorylation,” Physiological Reviews, vol. 68, no. 1, pp. 177–231, 1988. View at Google Scholar · View at Scopus
  57. M. Diez, B. Zimmermann, M. Borsch et al., “Proton-powered subunit rotation in single membrane-bound F F-ATP synthase,” Nature Structural and Molecular Biology, vol. 11, no. 2, pp. 135–141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Itoh, A. Takahashi, K. Adachi et al., “Mechanically driven ATP synthesis by F-ATPase,” Nature, vol. 427, no. 6973, pp. 465–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. S. S. Pedersen, O. R. Smith, J. De Vries, A. Appels, and J. Denollet, “Course of anxiety symptoms over an 18-month period in exhausted patients post percutaneous coronary intervention,” Psychosomatic Medicine, vol. 70, no. 3, pp. 349–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. G. Leslie and J. E. Walker, “Structural model of F-ATPase and the implications for rotary catalysis,” Philosophical Transactions of the Royal Society B, vol. 355, no. 1396, pp. 465–471, 2000. View at Google Scholar · View at Scopus
  61. R. I. Menz, J. E. Walker, and A. G. Leslie, “Structure of bovine mitochondrial F-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis,” Cell, vol. 106, no. 3, pp. 331–341, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. P. D. Boyer, “A research journey with ATP synthase,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39045–39061, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Kinosita Jr., R. Yasuda, H. Noji, S. Ishiwata, and M. Yoshida, “F-ATPase: a rotary motor made of a single molecule,” Cell, vol. 93, no. 1, pp. 21–24, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Nishizaka, K. Oiwa, H. Noji et al., “Chemomechanical coupling in F-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation,” Nature Structural and Molecular Biology, vol. 11, no. 2, pp. 142–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita Jr., “Direct observation of the rotation of F-ATPase,” Nature, vol. 386, no. 6622, pp. 299–302, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. A. E. Senior and J. Weber, “Happy motoring with ATP synthase,” Nature Structural and Molecular Biology, vol. 11, no. 2, pp. 110–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Yasuda, H. Noji, K. Kinosita Jr., and M. Yoshida, “F-ATPase is a highly efficient molecular motor that rotates with discrete 120steps,” Cell, vol. 93, no. 7, pp. 1117–1124, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Yoshida, E. Muneyuki, and T. Hisabori, “ATP synthase—a marvellous rotary engine of the cell,” Nature Reviews Molecular Cell Biology, vol. 2, no. 9, pp. 669–677, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. G. M. Whitesides, “The ‘right’ size in nanobiotechnology,” Nature Biotechnology, vol. 21, no. 10, pp. 1161–1165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. R. A. Sayle and E. J. Milner-White, “RASMOL: biomolecular graphics for all,” Trends in Biochemical Sciences, vol. 20, no. 9, pp. 374–376, 1995. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Dou, P. A. Fortes, and W. S. Allison, “The α(βYW)γ subcomplex of the F-ATpase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP,” Biochemistry, vol. 37, no. 47, pp. 16757–16764, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Lobau, J. Weber, and A. E. Senior, “Catalytic Site Nucleotide Binding and Hydrolysis in F1Fo-ATP Synthase,” Biochemistry, vol. 37, no. 30, pp. 10846–10853, 1998. View at Google Scholar
  73. J. Weber, S. T. Hammond, S. Wilke-Mounts, and A. E. Senior, “Mg coordination in catalytic sites of F-ATPase,” Biochemistry, vol. 37, no. 2, pp. 608–614, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Weber, S. Wilke-Mounts, R. S. Lee, E. Grell, and A. E. Senior, “Specific placement of tryptophan in the catalytic sites of Escherichia coli F-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 20126–20133, 1993. View at Google Scholar · View at Scopus
  75. C. Gibbons, M. G. Montgomery, A. G. Leslie, and J. E. Walker, “The structure of the central stalk in bovine F-ATPase at 2.4 Å resolution,” Nature Structural Biology, vol. 7, no. 11, pp. 1055–1061, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. V. K. Rastogi and M. E. Girvin, “Structural changes linked to proton translocation by subunit c of the ATP synthase,” Nature, vol. 402, no. 6759, pp. 263–268, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Lobau, J. Weber, S. Wilke-Mounts, and A. E. Senior, “F-ATPase, roles of three catalytic site residues,” Journal of Biological Chemistry, vol. 272, no. 6, pp. 3648–3656, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Nadanaciva, J. Weber, and A. E. Senior, “The role of β-Arg-182, an essential catalytic site residue in Escherichia coli F-ATPase,” Biochemistry, vol. 38, no. 24, pp. 7670–7677, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Nadanaciva, J. Weber, and A. E. Senior, “Binding of the transition state analog MgADP-fluoroaluminate to F- ATPase,” Journal of Biological Chemistry, vol. 274, no. 11, pp. 7052–7058, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Nadanaciva, J. Weber, and A. E. Senior, “New probes of the F-ATPase catalytic transition state reveal that two of the three catalytic sites can assume a transition state conformation simultaneously,” Biochemistry, vol. 39, no. 31, pp. 9583–9590, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Nadanaciva, J. Weber, S. Wilke-Mounts, and A. E. Senior, “Importance of F-ATPase residue α-Arg-376 for catalytic transition state stabilization,” Biochemistry, vol. 38, no. 47, pp. 15493–15499, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. Z. Ahmad and A. E. Senior, “Role of βAsn-243 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F-ATPase,” Journal of Biological Chemistry, vol. 279, no. 44, pp. 46057–46064, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. Z. Ahmad and A. E. Senior, “Modulation of charge in the phosphate binding site of Escherichia coli ATP synthase,” Journal of Biological Chemistry, vol. 280, no. 30, pp. 27981–27989, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. Z. Ahmad and A. E. Senior, “Involvement of ATP synthase residues αArg-376, βArg-182, and βLys-155 in Pi binding,” The FEBS Letters, vol. 579, no. 2, pp. 523–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. Z. Ahmad and A. E. Senior, “Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride,” The FEBS Letters, vol. 580, no. 2, pp. 517–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. L. E. Brudecki, J. J. Grindstaff, and Z. Ahmad, “Role of αPhe-291 residue in the phosphate-binding subdomain of catalytic sites of Escherichia coli ATP synthase,” Archives of Biochemistry and Biophysics, vol. 471, no. 2, pp. 168–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Kagawa, M. G. Montgomery, K. Braig, A. G. Leslie, and J. E. Walker, “The structure of bovine F-ATPase inhibited by ADP and beryllium fluoride,” EMBO Journal, vol. 23, no. 14, pp. 2734–2744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Braig, R. I. Menz, M. G. Montgomery, A. G. Leslie, and J. E. Walker, “Structure of bovine mitochondrial F-ATPase inhibited by MgADP and aluminium fluoride,” Structure, vol. 8, no. 6, pp. 567–573, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Noumi, M. Taniai, H. Kanazawa, and M. Futai, “Replacement of arginine 246 by histidine in the β subunit of Escherichia coli H-ATPase resulted in loss of multi-site ATPase activity,” Journal of Biological Chemistry, vol. 261, no. 20, pp. 9196–9201, 1986. View at Google Scholar · View at Scopus
  90. D. Parsonage, T. M. Duncan, S. Wilke-Mounts, F. A. Kironde, L. Hatch, and A. E. Senior, “The defective proton-ATPase of uncD mutants of Escherichia coli. Identification by DNA sequencing of residues in the beta-subunit which are essential for catalysis or normal assembly,” Journal of Biological Chemistry, vol. 262, no. 13, pp. 6301–6307, 1987. View at Google Scholar · View at Scopus
  91. M. K. al-Shawi, D. Parsonage, and A. E. Senior, “Kinetic characterization of the unisite catalytic pathway of seven β-subunit mutant F-ATPases from Escherichia coli,” Journal of Biological Chemistry, vol. 264, no. 26, pp. 15376–15383, 1989. View at Google Scholar · View at Scopus
  92. R. A. Bockmann and H. Grubmuler, “Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F-ATP synthase,” Nature Structural Biology, vol. 9, no. 3, pp. 198–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Dittrich, S. Hayashi, and K. Schulten, “On the mechanism of ATP hydrolysis in F-ATPase,” Biophysical Journal, vol. 85, no. 4, pp. 2253–2266, 2003. View at Google Scholar · View at Scopus
  94. W. Yang, Y. Q. Gao, Q. Cui, J. Ma, and M. Karplus, “The missing link between thermodynamics and structure in F-ATPase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 3, pp. 874–879, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Weber, “ATP synthase-the structure of the stator stalk,” Trends in Biochemical Sciences, vol. 32, no. 2, pp. 53–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Weber and A. E. Senior, “Location and properties of pyrophosphate-binding sites in Escherichia coli F-ATPase,” Journal of Biological Chemistry, vol. 270, no. 21, pp. 12653–12658, 1995. View at Publisher · View at Google Scholar · View at Scopus
  97. J. A. Perez, A. J. Greenfield, R. Sutton, and S. J. Ferguson, “Characterisation of phosphate binding to mitochondrial and bacterial membrane-bound ATP synthase by studies of inhibition with 4-chloro-7-nitrobenzofurazan,” The FEBS Letters, vol. 198, no. 1, pp. 113–118, 1986. View at Google Scholar · View at Scopus
  98. G. L. Orriss, A. G. W. Leslie, K. Braig, and J. E. Walker, “Bovine F-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary catalytic mechanism,” Structure, vol. 6, no. 7, pp. 831–837, 1998. View at Google Scholar · View at Scopus
  99. H. S. Penefsky, “Pi binding by the F-ATPase of beef heart mitochondria and of the Escherichia coli plasma membrane,” The FEBS Letters, vol. 579, no. 10, pp. 2250–2252, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. R. R. Copley and G. J. Barton, “A structural analysis of phosphate and sulphate binding sites in proteins estimation of propensities for binding and conservation of phosphate binding sites,” Journal of Molecular Biology, vol. 242, no. 4, pp. 321–329, 1994. View at Google Scholar · View at Scopus
  101. N. Guex and M. C. Peitsch, “SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling,” Electrophoresis, vol. 18, no. 15, pp. 2714–2723, 1997. View at Publisher · View at Google Scholar · View at Scopus