Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 201340, 24 pages
http://dx.doi.org/10.1155/2012/201340
Research Article

The Asymptotic Expansion Method via Symbolic Computation

Departamento de Matemática Aplicada, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain

Received 26 October 2011; Revised 25 March 2012; Accepted 26 March 2012

Academic Editor: B. V. Rathish Kumar

Copyright © 2012 Juan F. Navarro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Poincaré, Les Méthodes nouvelles de la Mécanique Céleste, Tome I, Gauthier-Villars, Paris, France, 1892.
  2. J. Henrard, “A survey of Poisson series processors,” Celestial Mechanics, vol. 45, no. 1–3, pp. 245–253, 1988. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Deprit, J. Henrard, and A. Rom, “La théorie de la lune de Delaunay et son prolongement,” Comptes Rendus de l'Academie des Sciences Paris A, vol. 271, pp. 519–520, 1970. View at Google Scholar
  4. A. Deprit, J. Henrard, and A. Rom, “Analytical lunar ephemeris: Delaunay's theory,” The Astronomical Journal, vol. 76, pp. 269–272, 1971. View at Google Scholar
  5. J. Henrard, “A new solution to the main problem of Lunar theory,” Celestial Mechanics, vol. 19, no. 4, pp. 337–355, 1979. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Chapront-Touzé, “La solution ELP du problème central de la Lune,” Astronomy & Astrophysics, vol. 83, p. 86, 1980. View at Google Scholar
  7. M. Chapront-Touzé, “Progress in the analytical theories for the orbital motion of the Moon,” Celestial Mechanics, vol. 26, no. 1, pp. 53–62, 1982. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Navarro and J. M. Ferrándiz, “A new symbolic processor for the Earth rotation theory,” Celestial Mechanics & Dynamical Astronomy, vol. 82, no. 3, pp. 243–263, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. A. Abad, A. Elipe, J. F. San-Juan, and S. Serrano, “Is symbolic integration better than numerical integration in satellite dynamics?” Applied Mathematics Letters, vol. 17, no. 1, pp. 59–63, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. V. I. Arnold, Ordinary Differential Equations, The Massachusetts Institute of Technology, Cambridge, Mass, USA, 1973.
  11. J. F. Navarro, “On the implementation of the Poincaré-Lindstedt technique,” Applied Mathematics and Computation, vol. 195, no. 1, pp. 183–189, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. J. F. Navarro, “Computation of periodic solutions in perturbed second-order ODEs,” Applied Mathematics and Computation, vol. 202, no. 1, pp. 171–177, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. N. Minorsky, Nonlinear Oscillations, Krieger, Boca Raton, Fla, USA, 1987.
  14. F. San-Juan and A. Abad, “Algebraic and symbolic manipulation of Poisson series,” Journal of Symbolic Computation, vol. 32, no. 5, pp. 565–572, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Hardy, K. S. Tan, and W. H. Steeb, Computer Algebra with SymbolicC++, World Scientific, Hackensack, NJ, USA, 2008.
  16. B. C. Ikoki, M. J. Richard, M. Bouazara, and S. Datoussaïd, “Symbolic treatment for the equations of motion for rigid multibody systems,” Transactions of the Canadian Society for Mechanical Engineering, vol. 34, no. 1, pp. 37–55, 2010. View at Google Scholar · View at Scopus
  17. P. Hartman, Ordinary Differential Equations, John Wiley & Sons Inc., New York, 1964.