Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 251295, 11 pages
Research Article

A New Weighted Correlation Coefficient Method to Evaluate Reconstructed Brain Electrical Sources

1School of Electrical Engineering and Computer Science, College of Engineering, Seoul National University, Seoul 151744, Republic of Korea
2College of Medicine, Korea University, Seoul 136705, Republic of Korea

Received 28 October 2011; Accepted 18 January 2012

Academic Editor: Venky Krishnan

Copyright © 2012 Jong-Ho Choi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Cohen and E. Halgren, “Magnetoencephalography,” in Encyclopedia of Neuroscience, L. R. Squire, Ed., pp. 615–622, Academic Press, Oxford, UK, 2009. View at Google Scholar
  2. M. S. Hamalainen and R. J. Ilmoniemi, “Interpreting magnetic fields of the brain: minimum norm estimates,” Medical and Biological Engineering and Computing, vol. 32, no. 1, pp. 35–42, 1994. View at Publisher · View at Google Scholar
  3. K. Uutela, M. Hämäläinen, and E. Somersalo, “Visualization of magnetoencephalographic data using minimum current estimates,” NeuroImage, vol. 10, no. 2, pp. 173–180, 1999. View at Publisher · View at Google Scholar
  4. R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain,” International Journal of Psychophysiology, vol. 18, no. 1, pp. 49–65, 1994. View at Publisher · View at Google Scholar
  5. I. F. Gorodnitsky, J. S. George, and B. D. Rao, “Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm,” Electroencephalography and Clinical Neurophysiology, vol. 95, no. 4, pp. 231–251, 1995. View at Publisher · View at Google Scholar
  6. S. Baillet, J. J. Rira, G. Main, J. F. Magin, J. Aubert, and L. Ganero, “Evaluation of inverse methods and head models for EEG source localization using a human skull phantom,” Physics in Medicine and Biology, vol. 46, no. 1, pp. 77–96, 2001. View at Publisher · View at Google Scholar
  7. A. M. Dale and M. I. Sereno, “Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach,” Journal of Cognitive Neuroscience, vol. 5, no. 2, pp. 162–176, 1993. View at Publisher · View at Google Scholar
  8. G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for choosing a good ridge parameter,” Technometrics, vol. 21, no. 2, pp. 215–223, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. A. Bartesaghi and G. Sapiro, “A system for the generation of curves on 3D brain images,” Human Brain Mapping, vol. 14, no. 1, pp. 1–15, 2001. View at Publisher · View at Google Scholar