`Journal of Applied MathematicsVolume 2012, Article ID 254123, 17 pageshttp://dx.doi.org/10.1155/2012/254123`
Research Article

## A Boundary Integral Equation with the Generalized Neumann Kernel for a Certain Class of Mixed Boundary Value Problem

1Department of Mathematics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
2Department of Mathematics, Faculty of Science, Ibb University, P.O. Box 70270, Ibb, Yemen
3Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
4Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Received 21 May 2012; Revised 29 August 2012; Accepted 12 September 2012

Copyright © 2012 Mohamed M. S. Nasser et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. R. Wegmann and M. M. S. Nasser, “The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 36–57, 2008.
2. M. M. S. Nasser, A. H. M. Murid, M. Ismail, and E. M. A. Alejaily, “Boundary integral equations with the generalized Neumann kernel for Laplace's equation in multiply connected regions,” Applied Mathematics and Computation, vol. 217, no. 9, pp. 4710–4727, 2011.
3. M. M. S. Nasser, “A boundary integral equation for conformal mapping of bounded multiply connected regions,” Computational Methods and Function Theory, vol. 9, no. 1, pp. 127–143, 2009.
4. M. M. S. Nasser, “Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel,” SIAM Journal on Scientific Computing, vol. 31, no. 3, pp. 1695–1715, 2009.
5. M. M. S. Nasser, “Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe's canonical slit domains,” Journal of Mathematical Analysis and Applications, vol. 382, no. 1, pp. 47–56, 2011.
6. F. D. Gakhov, Boundary Value Problems, Pergamon Press, Oxford, UK, 1966.
7. R. Haas and H. Brauchli, “Fast solver for plane potential problems with mixed boundary conditions,” Computer Methods in Applied Mechanics and Engineering, vol. 89, no. 1–3, pp. 543–556, 1991.
8. R. Haas and H. Brauchli, “Extracting singularities of Cauchy integrals—a key point of a fast solver for plane potential problems with mixed boundary conditions,” Journal of Computational and Applied Mathematics, vol. 44, no. 2, pp. 167–185, 1992.
9. K. H. Chen, J. H. Kao, J. T. Chen, D. L. Young, and M. C. Lu, “Regularized meshless method for multiply-connected-domain Laplace problems,” Engineering Analysis with Boundary Elements, vol. 30, no. 10, pp. 882–896, 2006.
10. H. S. Ho and D. Gutierrez-Lemini, “A general solution procedure in elastostatics with multiply-connected regions with applications to mode III fracture mechanics problems,” Acta Mechanica, vol. 44, no. 1-2, pp. 73–89, 1982.
11. E. Dontová, M. Dont, and J. Král, “Reflection and a mixed boundary value problem concerning analytic functions,” Mathematica Bohemica, vol. 122, no. 3, pp. 317–336, 1997.
12. S. G. Mikhlin, Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Rechnology, Pergamon Press, New York, NY, USA, 1957, Translated from the Russian by A. H. Armstrong.
13. N. I. Muskhelishvili, Singular Integral Equations, Wolters-Noordhoff, Leyden, Mass, USA, 1972, English translation of Russian edition 1953.
14. P. Henrici, Applied and Computational Complex Analysis, Vol. 3, John Wiley & Sons, New York, NY, USA, 1986.
15. S. G. Krantz, Geometric Function Theory: Explorations in Complex Analysis, Birkhäuser, Boston, Mass, USA, 2006.
16. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, vol. 4, Cambridge University Press, Cambridge, UK, 1997.
17. A. R. Krommer and C. W. Ueberhuber, Numerical Integration on Advanced Computer Systems, vol. 848, Springer, Berlin, Germany, 1994.
18. M. M. S. Nasser, A. H. M. Murid, and Z. Zamzamir, “A boundary integral method for the Riemann-Hilbert problem in domains with corners,” Complex Variables and Elliptic Equations, vol. 53, no. 11, pp. 989–1008, 2008.
19. A. Greenbaum, L. Greengard, and G. B. McFadden, “Laplace's equation and the Dirichlet-Neumann map in multiply connected domains,” Journal of Computational Physics, vol. 105, no. 2, pp. 267–278, 1993.
20. J. Helsing and E. Wadbro, “Laplace's equation and the Dirichlet-Neumann map: a new mode for Mikhlin's method,” Journal of Computational Physics, vol. 202, no. 2, pp. 391–410, 2005.
21. R. Wegmann, A. H. M. Murid, and M. M. S. Nasser, “The Riemann-Hilbert problem and the generalized Neumann kernel,” Journal of Computational and Applied Mathematics, vol. 182, no. 2, pp. 388–415, 2005.