Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012 (2012), Article ID 402490, 12 pages
http://dx.doi.org/10.1155/2012/402490
Research Article

A Relaxed Splitting Preconditioner for the Incompressible Navier-Stokes Equations

School of Mathematical Sciences, University of Electronic Science and Technology of China, Sichuan, Chengdu 611731, China

Received 8 December 2011; Revised 2 April 2012; Accepted 19 April 2012

Academic Editor: Massimiliano Ferronato

Copyright © 2012 Ning-Bo Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, NY, USA, 2005. View at Zentralblatt MATH
  2. R. Glowinski, “Finite element methods for incompressible viscous flow,” in Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions, Eds., vol. 9, North-Holland, Amsterdam, The Netherlands, 2003, Numerical Methods for Fluids (part3). View at Google Scholar
  3. M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point problems,” Acta Numerica, vol. 14, pp. 1–137, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2nd edition, 2003.
  5. H. C. Elman, V. E. Howle, J. Shadid, D. Silvester, and R. Tuminaro, “Least squares preconditioners for stabilized discretizations of the Navier-Stokes equations,” SIAM Journal on Scientific Computing, vol. 30, no. 1, pp. 290–311, 2007. View at Publisher · View at Google Scholar
  6. H. C. Elman and R. S. Tuminaro, “Boundary conditions in approximate commutator preconditioners for the Navier-Stokes equations,” Electronic Transactions on Numerical Analysis, vol. 35, pp. 257–280, 2009. View at Google Scholar
  7. M. A. Olshanskii and Y. V. Vassilevski, “Pressure schur complement preconditioners for the discrete Oseen problem,” SIAM Journal on Scientific Computing, vol. 29, no. 6, pp. 2686–2704, 2007. View at Publisher · View at Google Scholar
  8. M. Benzi and M. A. Olshanskii, “An augmented Lagrangian-based approach to the oseen problem,” SIAM Journal on Scientific Computing, vol. 28, no. 6, pp. 2095–2113, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. M. Benzi, M. A. Olshanskii, and Z. Wang, “Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, vol. 66, no. 4, pp. 486–508, 2011. View at Publisher · View at Google Scholar
  10. S. P. Hamilton, M. Benzi, and E. Haber, “New multigrid smoothers for the Oseen problem,” Numerical Linear Algebra with Applications, vol. 17, no. 2-3, pp. 557–576, 2010. View at Publisher · View at Google Scholar
  11. M. Benzi and Z. Wang, “Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier-Stokes equations,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2761–2784, 2011. View at Publisher · View at Google Scholar
  12. Z. Z. Bai, G. H. Golub, and M. K. Ng, “Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems,” SIAM Journal on Matrix Analysis and Applications, vol. 24, no. 3, pp. 603–626, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. M. Benzi and G. H. Golub, “A preconditioner for generalized saddle point problems,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 1, pp. 20–41, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. M. Benzi and J. Liu, “An efficient solver for the incompressible Navier-Stokes equations in rotation form,” SIAM Journal on Scientific Computing, vol. 29, no. 5, pp. 1959–1981, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. L. Chan, M. K. Ng, and N. K. Tsing, “Spectral analysis for HSS preconditioners,” Numerical Mathematics, vol. 1, no. 1, pp. 57–77, 2008. View at Google Scholar · View at Zentralblatt MATH
  16. M. Benzi and X.-P. Guo, “A dimensional split preconditioner for stokes and linearized Navier-Stokes equations,” Applied Numerical Mathematics, vol. 61, no. 1, pp. 66–76, 2011. View at Publisher · View at Google Scholar
  17. M. Benzi, M. Ng, Q. Niu, and Z. Wang, “A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations,” Journal of Computational Physics, vol. 230, no. 16, pp. 6185–6202, 2011. View at Publisher · View at Google Scholar
  18. M. Benzi and D. B. Szyld, “Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods,” Numerische Mathematik, vol. 76, no. 3, pp. 309–321, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. H. C. Elman, A. Ramage, and D. J. Silvester, “Algorithm 886: IFISS, a Matlab toolbox for modelling incompressible flow,” Association for Computing Machinery, vol. 33, no. 2, article 14, 2007. View at Publisher · View at Google Scholar
  20. P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum degree ordering algorithm,” SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 4, pp. 886–905, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. T. A. Davis, Direct Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2006.