Abstract

We study the generalized order-𝑘 Lucas sequences modulo 𝑚. Also, we define the 𝑖th generalized order-𝑘 Lucas orbit 𝑙𝑖,{𝛼1,𝛼2,,𝛼𝑘1}𝐴(𝐺) with respect to the generating set 𝐴 and the constants 𝛼1,𝛼2, and 𝛼𝑘1 for a finite group 𝐺=𝐴. Then, we obtain the lengths of the periods of the 𝑖th generalized order-𝑘 Lucas orbits of the binary polyhedral groups 𝑛,2,2,2,𝑛,2,2,2,𝑛 and the polyhedral groups (𝑛,2,2),(2,𝑛,2),(2,2,𝑛) for 1𝑖𝑘.

1. Introduction

The well-known Fibonacci sequence {𝐹𝑛} is defined as𝐹1=𝐹2=1,for𝑛>2,𝐹𝑛=𝐹𝑛1+𝐹𝑛2.(1.1) We call 𝐹𝑛 the 𝑛th Fibonacci number. The Fibonacci sequence is1,1,2,3,5,8,13,21,34,55,.(1.2)

Definition 1.1. Let 𝑓𝑛(𝑘) denote the 𝑛th member of the 𝑘-step Fibonacci sequence defined as 𝑓𝑛(𝑘)=𝑘𝑗=1𝑓(𝑘)𝑛𝑗for𝑛>𝑘(1.3) with boundary conditions 𝑓𝑖(𝑘)=0 for 1𝑖<𝑘 and 𝑓𝑘(𝑘)=1. Reducing this sequence by modulus 𝑚, we can get a repeating sequence, which we denote by 𝑓𝑓(𝑘,𝑚)=1(𝑘,𝑚),𝑓2(𝑘,𝑚),,𝑓𝑛(𝑘,𝑚),(1.4) where 𝑓𝑖(𝑘,𝑚)=𝑓𝑖(𝑘)(mod𝑚). We then have that (𝑓1(𝑘,𝑚),𝑓2(𝑘,𝑚),,𝑓𝑘(𝑘,𝑚))=(0,0,0,1) and it has the same recurrence relation as in (1.3) [1].

Theorem 1.2. 𝑓(𝑘,𝑚)  is a periodic sequence  [1].
Let 𝑘(𝑚) denote the smallest period of 𝑓(𝑘,𝑚), called the period of 𝑓(𝑘,𝑚) or the Wall number of the 𝑘-step Fibonacci sequence modulo 𝑚. For more information see [1].

Definition 1.3. Let 𝑘(𝑎1,𝑎2,,𝑎𝑘)(𝑚) denote the smallest period of the integer-valued recurrence relation 𝑢𝑛=𝑢𝑛1+𝑢𝑛2++𝑢𝑛𝑘, 𝑢1=𝑎1,𝑢2=𝑎2,,𝑢𝑘=𝑎𝑘 when each entry is reduced modulo 𝑚 [2].

Lemma 1.4. For 𝑎1,𝑎2,,𝑎𝑘,𝑥1,𝑥2,,𝑥𝑘 with 𝑚>0, 𝑎1,𝑎2,,𝑎𝑘 not all congruent to zero modulo 𝑚 and 𝑥1,𝑥2,,𝑥𝑘 not all congruent to zero modulo 𝑚, 𝑘(𝑎1,𝑎2,,𝑎𝑘)(𝑚)=𝑘(𝑥1,𝑥2,,𝑥𝑘)(𝑚),(1.5)see [2].

In [3], Taşçı and Kılıç defined the 𝑘 sequences of the generalized order-𝑘 Lucas numbers as follows:𝑙𝑖𝑛=𝑘𝑗=1𝑙𝑖𝑛𝑗,(1.6) for 𝑛>0 and 1𝑖𝑘, with boundary (initial) conditions𝑙𝑖𝑛=2if𝑖=2𝑛,1if0𝑖=1𝑛,otherwise,(1.7) for 1𝑘𝑛0, where 𝑙𝑖𝑛 is the 𝑛th term of the 𝑖th sequence. When 𝑖=1 and 𝑘=2, the generalized order-𝑘 Lucas sequence reduces to the usual negative Fibonacci sequence, that is, 𝑙1𝑛=𝐹𝑛+1 for all 𝑛+.

In [3], it is obtained that𝑙𝑖𝑛+1𝑙𝑖𝑛𝑙𝑖𝑛1𝑙𝑖𝑛𝑘+2𝑙=𝐴𝑖𝑛𝑙𝑖𝑛1𝑙𝑖𝑛2𝑙𝑖𝑛𝑘+1,(1.8) where.𝐴=11111100000100000010(1.9) The Lucas sequence, the generalized Lucas sequence, and their properties have been studied by several authors; see for example, [49]. The study of the Fibonacci sequences in groups began with the earlier work of Wall [10]. Knox examined the 𝑘-nacci (𝑘-step Fibonacci) sequences in finite groups [11]. Karaduman and Aydin examined the periods of the 2-step general Fibonacci sequences in dihedral groups 𝐷𝑛 [12]. Lü and Wang contributed to the study of the Wall number for the 𝑘-step Fibonacci sequence [1]. C. M. Campbell and P. P. Campbell examined the behaviour of the Fibonacci lengths of finite binary polyhedral groups [13]. Also, Deveci et al. obtained the periods of the 𝑘-nacci sequences in finite binary polyhedral groups [14]. Now, we extend the concept to 𝑘 sequences of the generalized order-𝑘 Lucas numbers and we examine the periods of the 𝑖th generalized order-𝑘 Lucas orbits of the binary polyhedral groups 𝑛,2,2,2,𝑛,2,2,2,𝑛 and the polyhedral groups (𝑛,2,2),(2,𝑛,2),(2,2,𝑛) for 1𝑖𝑘.

In this paper, the usual notation 𝑝 is used for a prime number.

2. Main Results and Proofs

Reducing the 𝑘 sequences of the generalized order-𝑘 Lucas numbers by modulus 𝑚, we can get a repeating sequence denoted by𝑙(𝑖,𝑚)=,𝑙1(𝑖,𝑚),𝑙2(𝑖,𝑚),,𝑙𝑛(𝑖,𝑚),for𝑛>0,1𝑖𝑘,(2.1) where 𝑙𝑛(𝑖,𝑚)=𝑙𝑖𝑛(mod𝑚). It has the same recurrence relation as that in (1.6).

Let the notation 𝑙𝑖𝑘(𝑚) denote the smallest period of 𝑙(𝑖,𝑚). It is easy to see from Lemma 1.4 that 𝑘(𝑚)=𝑙𝑖𝑘(𝑚).

For a given matrix 𝑀=[𝑏𝑖𝑗] with 𝑏𝑖𝑗’s being integers, 𝑀(mod𝑚) means that every entry of 𝑀 is reduced modulo 𝑚, that is, 𝑀(mod𝑚)=(𝑏𝑖𝑗(mod𝑚)). Let 𝐴𝑝𝛼={𝐴𝑖(mod𝑝𝛼)𝑖0} be a cyclic group, and let |𝐴𝑝𝛼| denote the order of 𝐴𝑝𝛼. Then, we have the following.

Theorem 2.1. 𝑘(𝑝𝛼)=|𝐴𝑝𝛼|.

Proof. It is clear that |𝐴𝑝𝛼| is divisible by 𝑘(𝑝𝛼). Then we need only to prove that 𝑘(𝑝𝛼)is divisible by|𝐴𝑝𝛼|. Let 𝑘(𝑝𝛼)=𝜆. Then we have 𝐴𝜆=𝑎11𝑎12𝑎1𝑘𝑎21𝑎22𝑎2𝑘𝑎𝑘1𝑎𝑘2𝑎𝑘𝑘.(2.2) By mathematical induction it is easy to prove that the elements of the matrix 𝐴𝜆 are in the following forms: 𝑎11=𝑓(𝑘)𝜆+𝑘,𝑎12=𝑓(𝑘)𝜆+𝑘1++𝑓(𝑘)𝜆+1,𝑎13=𝑓(𝑘)𝜆+𝑘1++𝑓(𝑘)𝜆+2,,𝑎1𝑘1=𝑓(𝑘)𝜆+𝑘1+𝑓(𝑘)𝜆+𝑘2,𝑎1𝑘=𝑓(𝑘)𝜆+𝑘1,𝑎21=𝑓(𝑘)𝜆+𝑘1,𝑎22=𝑓(𝑘)𝜆+𝑘2++𝑓𝜆(𝑘),𝑎23=𝑓(𝑘)𝜆+𝑘2++𝑓(𝑘)𝜆+1,,𝑎1𝑘1=𝑓(𝑘)𝜆+𝑘2+𝑓(𝑘)𝜆+𝑘3,𝑎2𝑘=𝑓(𝑘)𝜆+𝑘2,𝑎𝑘1=𝑓(𝑘)𝜆+1,𝑎𝑘2=𝑓𝜆(𝑘)++𝑓(𝑘)𝜆𝑘+2,𝑎𝑘3=𝑓𝜆(𝑘)++𝑓(𝑘)𝜆𝑘+3,,𝑎𝑘𝑘1=𝑓𝜆(𝑘)+𝑓(𝑘)𝜆1,𝑎𝑘𝑘=𝑓𝜆(𝑘).(2.3) We thus obtain that 𝑎𝑖𝑖1(mod𝑝𝛼)for𝑎1𝑖𝑘,𝑖𝑗0(mod𝑝𝛼)for1𝑖,𝑗𝑘suchthat𝑖𝑗.(2.4) So we get that 𝐴𝜆𝐼(mod𝑝𝛼), which yields that 𝑛 is divisible by |𝐴𝑝𝛼|. We are done.

Definition 2.2. Let 𝐺 be a finitely generated group 𝐺=𝐴, where 𝐴={𝑎1,𝑎2,,𝑎𝑘} and 1𝑖𝑘. The sequence 𝑥0=𝑎1𝛼1,𝑥1=𝑎2𝛼2,,𝑥𝑘2=𝑎𝑘1𝛼𝑘1,(2.5) where 𝑎𝑢𝛼𝑢=𝑎𝑢𝑎𝑙𝑖𝑢𝑘𝑘if𝛼𝑢𝑎=1,𝑙𝑖𝑢𝑘𝑘𝑎𝑢if𝛼𝑢=2(2.6) such that 1𝑢𝑘1 and 1𝛼𝑢2,𝑥𝑘1=𝑎𝑙𝑖0𝑘,𝑥𝑘+𝛽=𝑘𝑗=1𝑥𝛽+𝑗1 for 𝛽0, is called the 𝑖th generalized order-𝑘 Lucas orbit of 𝐺 with respect to the generating set 𝐴 and the 𝛼1,𝛼2,,𝛼𝑘1 constants, denoted by 𝑙𝑖,{𝛼1,𝛼2,,𝛼𝑘1}𝐴(𝐺).

Example 2.3. The 3rd generalized order-4 Lucas orbits 𝑙3,{1,1,1}{𝑎1,𝑎2,𝑎3,𝑎4}(𝐺), 𝑙3,{1,2,1}{𝑎1,𝑎2,𝑎3,𝑎4}(𝐺), 𝑙3,{1,1,2}{𝑎1,𝑎2,𝑎3,𝑎4}(𝐺), 𝑙3,{1,2,2}{𝑎1,𝑎2,𝑎3,𝑎4}(𝐺), 𝑙3,{2,1,1}{𝑎1,𝑎2,𝑎3,𝑎4}(𝐺), 𝑙3,{2,2,1}{𝑎1,𝑎2,𝑎3,𝑎4}(𝐺), 𝑙3,{2,1,2}{𝑎1,𝑎2,𝑎3,𝑎4}(𝐺), and 𝑙3,{2,2,2}{𝑎1,𝑎2,𝑎3,𝑎4}(𝐺) of the finitely generated group 𝐺=𝐴, where 𝐴={𝑎1,𝑎2,𝑎3,𝑎4}, respectively, are as follows: 𝑥0=𝑎1𝑎𝑙334=𝑎1,𝑥1=𝑎2𝑎𝑙324=𝑎2𝑎41,𝑥2=𝑎3𝑎𝑙314=𝑎3𝑎24,𝑥3=𝑎𝑙304=𝑒,𝑥4+𝛽=4𝑗=1𝑥𝛽+𝑗1𝑥(𝛽0),0=𝑎1𝑎𝑙334=𝑎1,𝑥1=𝑎𝑙324𝑎2=𝑎41𝑎2,𝑥2=𝑎3𝑎𝑙314=𝑎3𝑎24,𝑥3=𝑎𝑙304=𝑒,𝑥4+𝛽=4𝑗=1𝑥𝛽+𝑗1𝑥(𝛽0),0=𝑎1𝑎𝑙334=𝑎1,𝑥1=𝑎2𝑎𝑙324=𝑎2𝑎41,𝑥2=𝑎𝑙314𝑎3=𝑎24𝑎3,𝑥3=𝑎𝑙304=𝑒,𝑥4+𝛽=4𝑗=1𝑥𝛽+𝑗1𝑥(𝛽0),0=𝑎1𝑎𝑙334=𝑎1,𝑥1=𝑎𝑙324𝑎2=𝑎41𝑎2,𝑥2=𝑎𝑙314𝑎3=𝑎24𝑎3,𝑥3=𝑎𝑙304=𝑒,𝑥4+𝛽=4𝑗=1𝑥𝛽+𝑗1𝑥(𝛽0),0=𝑎𝑙334𝑎1=𝑎1,𝑥1=𝑎2𝑎𝑙324=𝑎2𝑎41,𝑥2=𝑎3𝑎𝑙314=𝑎3𝑎24,𝑥3=𝑎𝑙304=𝑒,𝑥4+𝛽=4𝑗=1𝑥𝛽+𝑗1𝑥(𝛽0),0=𝑎𝑙334𝑎1=𝑎1,𝑥1=𝑎𝑙324𝑎2=𝑎41𝑎2,𝑥2=𝑎3𝑎𝑙314=𝑎3𝑎24,𝑥3=𝑎𝑙304=𝑒,𝑥4+𝛽=4𝑗=1𝑥𝛽+𝑗1𝑥(𝛽0),0=𝑎𝑙334𝑎1=𝑎1,𝑥1=𝑎2𝑎𝑙324=𝑎2𝑎41,𝑥2=𝑎𝑙314𝑎3=𝑎24𝑎3,𝑥3=𝑎𝑙304=𝑒,𝑥4+𝛽=4𝑗=1𝑥𝛽+𝑗1𝑥(𝛽0),0=𝑎𝑙334𝑎1=𝑎1,𝑥1=𝑎𝑙324𝑎2=𝑎41𝑎2,𝑥2=𝑎𝑙314𝑎3=𝑎24𝑎3,𝑥3=𝑎𝑙304=𝑒,𝑥4+𝛽=4𝑗=1𝑥𝛽+𝑗1(𝛽0).(2.7) It is well known that a sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the repeating subsequence is the period of the sequence.

Theorem 2.4. The 𝑖th generalized order-𝑘 Lucas orbits in a finite group are periodic.

Proof. The proof is similar to the proof of Theorem  1 in [10] and is omitted.
We denote the length of the period of the sequence 𝑙𝑖,{𝛼1,𝛼2,,𝛼𝑘1}𝐴(𝐺) by LEN𝐴𝑙𝑖,{𝛼1,𝛼2,,𝛼𝑘1}(𝐺) and call it the 𝑖th generalized order-𝑘 Lucas length of 𝐺 with respect to the generating set 𝐴 and the constants 𝛼1,𝛼2,,𝛼𝑘1.
From the definition it is clear that the 𝑖th generalized order-𝑘 Lucas length of a group depends on the chosen generating set and the order in which the assignments of 𝑥0,𝑥1,𝑥𝑛1 are made.
We will now address the 𝑖th generalized order-𝑘 Lucas lengths in specific classes of groups.
The binary polyhedral group 𝑙,𝑚,𝑛,  for  𝑙,𝑚,𝑛>1,  is defined by the presentation 𝑥,𝑦,𝑧𝑥𝑙=𝑦𝑚=𝑧𝑛=𝑥𝑦𝑧(2.8) or 𝑥,𝑦𝑥𝑙=𝑦𝑚=(𝑥𝑦)𝑛.(2.9) The binary polyhedral group  𝑙,𝑚,𝑛  is finite if, and only if, the number 𝑘=𝑙𝑚𝑛(1/𝑙+1/𝑚+1/𝑛1)=𝑚𝑛+𝑛𝑙+𝑙𝑚𝑙𝑚𝑛 is positive. Its order is 4𝑙𝑚𝑛/𝑘.
For more information on these groups, see [15, pages 68–71].
The polyhedral group  (𝑙,𝑚,𝑛),  for  𝑙,𝑚,𝑛>1,  is defined by the presentation 𝑥,𝑦,𝑧𝑥𝑙=𝑦𝑚=𝑧𝑛=𝑥𝑦𝑧=𝑒(2.10) or 𝑥,𝑦𝑥𝑙=𝑦𝑚=(𝑥𝑦)𝑛.=𝑒(2.11) The polyhedral group (𝑙,𝑚,𝑛) is finite if, and only if, the number 𝑘=𝑙𝑚𝑛(1/𝑙+1/𝑚+1/𝑛1)=𝑚𝑛+𝑛𝑙+𝑙𝑚𝑙𝑚𝑛 is positive. Its order is 2𝑙𝑚𝑛/𝑘.
For more information on these groups, see [15, pages 67-68].

Theorem 2.5. The 𝑖th generalized order-3 Lucas lengths of the binary polyhedral group 𝑛,2,2 for every 𝑖 integer such that 1𝑖3 and the generating triple {𝑥,𝑦,𝑧}  are as follows:(i)LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}(𝑛,2,2)=8for1𝛼1,𝛼22,(ii)LEN{𝑥,𝑦,𝑧}𝑙2,{𝛼1,𝛼2}(𝑛,2,2)=3(2𝑛)for1𝛼1,𝛼22,(iii)(1)LEN{𝑥,𝑦,𝑧}𝑙3,{1,1}(𝑛,2,2)=LEN{𝑥,𝑦,𝑧}𝑙3,{1,2}(𝑛,2,2)=8,(2)LEN{𝑥,𝑦,𝑧}𝑙3,{2,1}(𝑛,2,2)=LEN{𝑥,𝑦,𝑧}𝑙3,{2,2}(𝑛,2,2)=4𝑛 if 𝑛 is even, 8𝑛 if 𝑛 is odd.

Proof. We prove the result by direct calculation. We first note that in the group defined by 𝑥,𝑦,𝑧𝑥𝑛=𝑦2=𝑧2=𝑥𝑦𝑧, |𝑥|=2𝑛 (where |𝑥| means the order of𝑥), |𝑦|=4, |𝑧|=4, 𝑥=𝑧𝑦3, 𝑦=𝑥1𝑧, and 𝑧=𝑥𝑦.
(i) The 1st generalized order-3 Lucas orbits of the group 𝑛,2,2 for generating triple {𝑥,𝑦,𝑧} and every constant 𝛼1,𝛼2 such that 1𝛼1,𝛼22 are the same and are as follows: 𝑥0=𝑥,𝑥1=𝑦,𝑥2=𝑧1,𝑥3=𝑒,𝑥4=𝑦𝑧1,𝑥5=𝑥𝑧1,𝑥6=𝑧1,𝑥7=𝑥𝑛,𝑥8=𝑥,𝑥9=𝑦,𝑥10=𝑧1,.(2.12) Since the elements succeeding 𝑥8,𝑥9,and𝑥10 depend on 𝑥, 𝑦, and 𝑧1 for their values, the cycle is again the 8th element; that is, 𝑥0=𝑥8,𝑥1=𝑥9,𝑥2=𝑥10,. Thus, LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}(𝑛,2,2)=8 for 1𝛼1,𝛼22.
(ii) Firstly, let us consider the orbits 𝑙2,{1,1}{𝑥,𝑦,𝑧}(𝑛,2,2) and 𝑙2,{2,1}{𝑥,𝑦,𝑧}(𝑛,2,2). The orbits 𝑙2,{1,1}{𝑥,𝑦,𝑧}(𝑛,2,2) and 𝑙2,{2,1}{𝑥,𝑦,𝑧}(𝑛,2,2) are the same and are as follows: 𝑥0=𝑥,𝑥1=𝑥1,𝑥2=𝑧2,𝑥3=𝑧2,𝑥4=𝑥1,𝑥5=𝑥1,𝑥6=𝑥2𝑧2,𝑥7=𝑥4𝑧2,𝑥8=𝑥7,𝑥9=𝑥13,𝑥10=𝑥24𝑧2,𝑥11=𝑥44𝑧2,.(2.13) For 𝑚>3 we can see that the sequence will separate into some natural layers and each layer will be of the form 𝑥𝑚=𝑥𝑢𝑚if𝑥𝑚0(mod4),𝑢𝑚if𝑥𝑚1(mod4),𝑢𝑚𝑧2if𝑥𝑚2(mod4),𝑢𝑚𝑧2if𝑚3(mod4),(2.14) where 𝑢𝑚=𝑢𝑚3+𝑢𝑚2+𝑢𝑚1,𝑢0=1,𝑢1=1,𝑢2=0.(2.15) Now the proof is finished when we note that the sequence will repeat when 𝑥3(2𝑛)=𝑥,𝑥3(2𝑛)+1=𝑥1, and 𝑥3(2𝑛)+2=𝑧2, where 3(2𝑛) is the 3-step Wall number of the positive integer 2𝑛 and 3(2𝑛)=4𝜇(𝜇𝑁). Letting 𝐿=LEN{𝑥,𝑦,𝑧}𝑙2,{1,1}(𝑛,2,2)=LEN{𝑥,𝑦,𝑧}𝑙2,{2,1}(𝑛,2,2), we have 𝑥𝐿=𝑥𝑢𝐿,𝑥𝐿+1=𝑥𝑢𝐿+1,𝑥𝐿+2=𝑥𝑢𝐿+2𝑧2.(2.16) Using Lemma 1.4, we obtain 𝑢𝐿=𝑢0=1,𝑢𝐿+1=𝑢1=1, and 𝑢𝐿+2=𝑢2=0. In this case the above equalities give 𝑥𝐿=𝑥𝑢𝐿=𝑥,𝑥𝐿+1=𝑥𝑢𝐿+1=𝑥1,𝑥𝐿+2=𝑥𝑢𝐿+2𝑧2=𝑥0𝑧2=𝑧2.(2.17) The smallest nontrivial integer satisfying the above conditions occurs when the period is 3(2𝑛).
Secondly, let us consider the orbits 𝑙2,{1,2}{𝑥,𝑦,𝑧}(𝑛,2,2) and 𝑙2,{2,2}{𝑥,𝑦,𝑧}(𝑛,2,2). The orbits 𝑙2,{1,2}{𝑥,𝑦,𝑧}(𝑛,2,2) and 𝑙2,{2,2}{𝑥,𝑦,𝑧}(𝑛,2,2) are the same and are as follows: 𝑥0=𝑥,𝑥1=𝑥,𝑥2=𝑧2,𝑥3=𝑥2𝑧2,𝑥4=𝑥3,𝑥5=𝑥5,𝑥6=𝑥10𝑧2,𝑥7=𝑥18𝑧2,𝑥8=𝑥33,𝑥9=𝑥61,𝑥10=𝑥112𝑧2,𝑥11=𝑥206𝑧2,.(2.18) For 𝑚>3 we can see that the sequence will separate into some natural layers and each layer will be of the form 𝑥𝑚=𝑥𝑣𝑚if𝑥𝑚0(mod4),𝑣𝑚if𝑥𝑚1(mod4),𝑣𝑚𝑧2if𝑥𝑚2(mod4),𝑣𝑚𝑧2if𝑚3(mod4),(2.19) where 𝑣𝑚=𝑣𝑚3+𝑣𝑚2+𝑣𝑚1,𝑣0=1,𝑣1=1,𝑣2=0.(2.20) Now the proof is finished when we note that the sequence will repeat when 𝑥3(2𝑛)=𝑥,𝑥3(2𝑛)+1=𝑥 and 𝑥3(2𝑛)+2=𝑧2. Letting 𝐿=LEN{𝑥,𝑦,𝑧}𝑙2,{1,2}(𝑛,2,2)=LEN{𝑥,𝑦,𝑧}𝑙2,{2,2}(𝑛,2,2), we have 𝑥𝐿=𝑥𝑣𝐿,𝑥𝐿+1=𝑥𝑣𝐿+1,𝑥𝐿+2=𝑥𝑣𝐿+2𝑧2.(2.21) Using Lemma 1.4, we obtain 𝑣𝐿=𝑣0=1,𝑣𝐿+1=𝑣1=1, and 𝑣𝐿+2=𝑣2=0. In this case the above equalities give 𝑥𝐿=𝑥𝑣𝐿=𝑥,𝑥𝐿+1=𝑥𝑣𝐿+1=𝑥,𝑥𝐿+2=𝑥𝑣𝐿+2𝑧2=𝑥0𝑧2=𝑧2.(2.22) The smallest nontrivial integer satisfying the above conditions occurs when the period is 3(2𝑛).
(iii) (1)The orbits 𝑙3,{1,1}{𝑥,𝑦,𝑧}(𝑛,2,2) and 𝑙3,{1,2}{𝑥,𝑦,𝑧}(𝑛,2,2) are the same and are as follows: 𝑥0=𝑥𝑧1,𝑥1=𝑦3,𝑥2=𝑒,𝑥3=𝑥𝑛+2,𝑥4=𝑦𝑥2,𝑥5=𝑦3,𝑥6=𝑥𝑛,𝑥7=𝑥𝑛2,𝑥8=𝑥𝑧1,𝑥9=𝑦3,𝑥10=𝑒,.(2.23) So, we get LEN{𝑥,𝑦,𝑧}𝑙3,{1,1}(𝑛,2,2)=LEN{𝑥,𝑦,𝑧}𝑙3,{1,2}(𝑛,2,2)=8. (2)The orbits 𝑙3,{2,1}{𝑥,𝑦,𝑧}(𝑛,2,2) and 𝑙3,{2,2}{𝑥,𝑦,𝑧}(𝑛,2,2) are the same and are as follows: 𝑥0=𝑦3,𝑥1=𝑥𝑛+1,𝑥2=𝑒,𝑥3=𝑦𝑥,𝑥4=𝑥1,𝑥5=𝑥2,𝑥6=𝑦3𝑥3,𝑥7=𝑥3𝑦𝑥3,𝑥8=𝑦3,𝑥9=𝑥𝑛+1,𝑥10=𝑥4,𝑥11=𝑦𝑥5,𝑥12=𝑦3,𝑥13=𝑥1,𝑥14=𝑥6,𝑥15=𝑦3𝑥7,𝑥16=𝑦3,𝑥17=𝑥𝑛+1,𝑥18=𝑥8,.(2.24) The sequence can be said to form layers of length eight. Using the above, the sequence becomes 𝑥0=𝑦3,𝑥1=𝑥𝑛+1,𝑥2𝑥=𝑒,,8=𝑦3,𝑥9=𝑥𝑛+1,𝑥10=𝑥4𝑥,,16=𝑦3,𝑥17=𝑥𝑛+1,𝑥18=𝑥8𝑥,,8𝑖=𝑦3,𝑥8𝑖+1=𝑥𝑛+1,𝑥8𝑖+2=𝑥4𝑖,.(2.25) So we need the smallest 𝑖 such that 4𝑖=2𝑛𝑘 for 𝑘.
If 𝑛 is even, then 𝑖=𝑛/2. Thus, 8𝑖=4𝑛 and LEN{𝑥,𝑦,𝑧}𝑙3,{2,1}(𝑛,2,2)=LEN{𝑥,𝑦,𝑧}𝑙3,{2,2}(𝑛,2,2)=4𝑛.
If 𝑛 is odd, then 𝑖=𝑛. Thus, 8𝑖=8𝑛 and LEN{𝑥,𝑦,𝑧}𝑙3,{2,1}(𝑛,2,2)=LEN{𝑥,𝑦,𝑧}𝑙3,{2,2}(𝑛,2,2)=8𝑛.

Theorem 2.6. The 𝑖th generalized order-2 Lucas lengths of the binary polyhedral group 𝑛,2,2 for every 𝑖 such that 1𝑖2 and the generating pair {𝑥,𝑦} are 6.

Proof. We prove the result by direct calculation. We first note that in the group defined by 𝑥,𝑦𝑥𝑛=𝑦2=(𝑥𝑦)2||𝑦||,|𝑥|=2𝑛,=4,𝑥𝑦=𝑦𝑥1,𝑦𝑥=𝑥1𝑦.(2.26) Firstly, let us consider the orbits 𝑙1,{1}{𝑥,𝑦}(𝑛,2,2) and 𝑙1,{2}{𝑥,𝑦}(𝑛,2,2). The orbits 𝑙1,{1}{𝑥,𝑦}(𝑛,2,2) and 𝑙1,{2}{𝑥,𝑦}(𝑛,2,2) are the same and are as follows: 𝑥0=𝑥,𝑥1=𝑦1,𝑥2=𝑥𝑦1,𝑥3=𝑥𝑛1,𝑥4=𝑥2𝑦,𝑥5=𝑦1𝑥1,𝑥6=𝑥,𝑥7=𝑦1,.(2.27) So, we get LEN{𝑥,𝑦}𝑙1,{1}(𝑛,2,2)=LEN{𝑥,𝑦}𝑙1,{2}(𝑛,2,2)=6.
Secondly, let us consider the orbit 𝑙2,{1}{𝑥,𝑦}(𝑛,2,2). The orbit 𝑙2,{1}{𝑥,𝑦}(𝑛,2,2) is as follows: 𝑥0=𝑥𝑦1,𝑥1=𝑥𝑛,𝑥2=𝑥𝑦,𝑥3=𝑥𝑦1,𝑥4=𝑒,𝑥5=𝑥𝑦1,𝑥6=𝑥𝑦1,𝑥7=𝑥𝑛,.(2.28) So, we get LEN{𝑥,𝑦}𝑙2,{1}(𝑛,2,2)=6.
Thirdly, let us consider the orbit 𝑙2,{2}{𝑥,𝑦}(𝑛,2,2). The orbit 𝑙2,{2}{𝑥,𝑦}(𝑛,2,2) is as follows: 𝑥0=𝑦1𝑥,𝑥1=𝑥𝑛,𝑥2=𝑦𝑥,𝑥3=𝑦1𝑥,𝑥4=𝑒,𝑥5=𝑦1𝑥,𝑥6=𝑦1𝑥,𝑥7=𝑥𝑛,.(2.29) So, we get LEN{𝑥,𝑦}𝑙2,{2}(𝑛,2,2)=6.

Theorem 2.7. The 𝑖th generalized order-3 Lucas lengths of the binary polyhedral group 2,𝑛,2 for every 𝑖 integer such that 1𝑖3 and the generating triple {𝑥,𝑦,𝑧} are as follows:(i)LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}2,𝑛,2=8for1𝛼1,𝛼22,(ii)LEN{𝑥,𝑦,𝑧}𝑙2,{𝛼1,𝛼2}2,𝑛,2=8for1𝛼1,𝛼22,(iii)LEN{𝑥,𝑦,𝑧}𝑙3,{𝛼1,𝛼2}2,𝑛,2=3(2𝑛)for1𝛼1,𝛼22.

Proof. The proof is similar to the proof of Theorem 2.5 and is omitted.

Theorem 2.8. The 𝑖th generalized order-2 Lucas lengths of the binary polyhedral group 2,𝑛,2 for every 𝑖 such that 1𝑖2 and the generating pair {𝑥,𝑦} are 6.

Proof. The proof is similar to the proof of Theorem 2.6 and is omitted.

Theorem 2.9. The 𝑖th generalized order-3 Lucas lengths of the binary polyhedral group 2,2,𝑛 for every 𝑖 integer such that 1𝑖3 and the generating triple {𝑥,𝑦,𝑧} are as follows:(i)LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}(2,2,𝑛)=4𝑛if𝑛iseven,8𝑛if𝑛isoddfor1𝛼1,𝛼22,(2.30)(ii)LEN{𝑥,𝑦,𝑧}𝑙2,{𝛼1,𝛼2}(2,2,𝑛)=2𝑛if𝑛0mod4,4𝑛if𝑛2mod4,8𝑛otherwisefor1𝛼1,𝛼22,(2.31)(iii)LEN{𝑥,𝑦,𝑧}𝑙3,{𝛼1,𝛼2}(2,2,𝑛)=8for1𝛼1,𝛼22(2.32)

Proof. We prove the result by direct calculation. We first note that in the group defined by 𝑥,𝑦,𝑧𝑥2=𝑦2=𝑧𝑛=𝑥𝑦𝑧,|𝑥|=4,|𝑦|=4,|𝑧|=2𝑛,𝑥=𝑦𝑧,𝑦=𝑥𝑧1 and 𝑧=𝑦𝑥1.
(i) the 1st generalized order-3 Lucas orbits of the group 2,2,𝑛 for generating triple {𝑥,𝑦,𝑧} and every constant 𝛼1,𝛼2 such that 1𝛼1,𝛼22 are the same and are as follows: 𝑥0=𝑥,𝑥1=𝑦,𝑥2=𝑧1,𝑥3=𝑦𝑧2𝑦,𝑥4=𝑦2𝑧3𝑦,𝑥5=𝑦,𝑥6=𝑦2𝑥𝑧,7=𝑦2𝑧4,𝑥8=𝑥𝑧4,𝑥9=𝑦,𝑥10=𝑧1,𝑥11=𝑦𝑧6𝑦,𝑥12=𝑦2𝑧7𝑥𝑦,13=𝑦,𝑥14=𝑦2𝑧,𝑥15=𝑦2𝑧8,𝑥16=𝑥𝑧8,𝑥17=𝑦,𝑥18=𝑧1,.(2.33) The sequence can be said to form layers of length eight. Using the above, the sequence becomes 𝑥0=𝑥,𝑥1=𝑦,𝑥2=𝑧1𝑥,,8=𝑥𝑧4,𝑥9=𝑦,𝑥10=𝑧1𝑥,,16=𝑥𝑧8,𝑥17=𝑦,𝑥18=𝑧1𝑥,,8𝑖=𝑥𝑧4𝑖,𝑥8𝑖+1=𝑦,𝑥8𝑖+2=𝑧1,.(2.34) So, we need the smallest 𝑖 such that 4𝑖=2𝑛𝑘 for 𝑘.
If 𝑛 is even, then 𝑖=𝑛/2. Thus, 8𝑖=4𝑛 and LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}(2,2,𝑛)=4𝑛 for 1𝛼1,𝛼22.
If 𝑛 is odd, then 𝑖=𝑛. Thus, 8𝑖=8𝑛 and LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}(2,2,𝑛)=8𝑛 for 1𝛼1,𝛼22.
(ii) The orbits 𝑙2,{1,1}{𝑥,𝑦,𝑧}(2,2,𝑛) and 𝑙2,{2,1}{𝑥,𝑦,𝑧}(2,2,𝑛) are the same and are as follows: 𝑥0=𝑥,𝑥1=𝑦𝑧1,𝑥2=𝑧2,𝑥3=𝑧𝑛,𝑥4=𝑥𝑧𝑛,𝑥5=𝑧2𝑥,𝑥6=𝑥𝑧2𝑥𝑥,7=𝑥𝑧4𝑥,𝑥8=𝑧8𝑥,𝑥9=𝑦𝑧1,𝑥10=𝑧2,𝑥11=𝑧𝑛+8,𝑥12=𝑥𝑧𝑛+8,𝑥13=𝑧2𝑥,𝑥14=𝑥𝑧2𝑥,𝑥15=𝑥𝑧12𝑥,𝑥16=𝑧16𝑥,𝑥17=𝑦𝑧1,𝑥18=𝑧2,.(2.35) The sequence can be said to form layers of length eight. Using the above, the sequence becomes 𝑥0=𝑥,𝑥1=𝑦𝑧1,𝑥2=𝑧2𝑥,,8=𝑧8𝑥,𝑥9=𝑦𝑧1,𝑥10=𝑧2𝑥,,16=𝑧16𝑥,𝑥17=𝑦𝑧1,𝑥18=𝑧2𝑥,,8𝑖=𝑧8𝑖𝑥,𝑥8𝑖+1=𝑦𝑧1,𝑥8𝑖+2=𝑧2,.(2.36) So, we need the smallest 𝑖 such that 4𝑖=2𝑛𝑘 for 𝑘.
If 𝑛0mod4, then 𝑖=𝑛/4. Thus, 8𝑖=2𝑛 and LEN{𝑥,𝑦,𝑧}𝑙2,{1,1}(2,2,𝑛)=LEN{𝑥,𝑦,𝑧}𝑙2,{1,1}(2,2,𝑛)=2𝑛.
If 𝑛2mod4, then 𝑖=𝑛/2. Thus, 8𝑖=4𝑛 and LEN{𝑥,𝑦,𝑧}𝑙2,{1,1}(2,2,𝑛)=LEN{𝑥,𝑦,𝑧}𝑙2,{1,1}(2,2,𝑛)=4𝑛.
If 𝑛1mod4 or 𝑛3mod4, then 𝑖=𝑛. Thus, 8𝑖=8𝑛 and LEN{𝑥,𝑦,𝑧}𝑙2,{1,1}(2,2,𝑛)=LEN{𝑥,𝑦,𝑧}𝑙2,{1,1}(2,2,𝑛)=8𝑛.
The orbits 𝑙2,{1,1}{𝑥,𝑦,𝑧}(2,2,𝑛) and 𝑙2,{2,1}{𝑥,𝑦,𝑧}(2,2,𝑛) are the same. The proofs for these orbits are similar to the above and are omitted.
(iii) The orbits 𝑙3,{1,1}(2,2,𝑛),𝑙3,{1,2}(2,2,𝑛),𝑙3,{2,1}(2,2,𝑛), and 𝑙3,{2,2}(2,2,𝑛), respectively, are as follows: 𝑥0=𝑦,𝑥1=𝑥𝑧,𝑥2=𝑒,𝑥3=𝑧𝑛+2,𝑥4=𝑥𝑧𝑛+3,𝑥5𝑥=𝑥𝑧,6=𝑧𝑛,𝑥7=𝑥𝑧2𝑥,𝑥8=𝑦,𝑥9=𝑥𝑧,𝑥10𝑥=𝑒,,0=𝑦,𝑥1=𝑧2𝑦,𝑥2=𝑒,𝑥3=𝑥𝑧𝑦,𝑥4=𝑧4𝑦3,𝑥5=𝑧2𝑥𝑦,6=𝑧𝑛,𝑥7=𝑧𝑛+2,𝑥8=𝑦,𝑥9=𝑧2𝑦,𝑥10𝑥=𝑒,,0=𝑥𝑧,𝑥1=𝑥𝑧,𝑥2=𝑒,𝑥3=𝑧𝑛,𝑥4=𝑥𝑧𝑛+1,𝑥5𝑥=𝑥𝑧,6=𝑧𝑛,𝑥7=𝑧𝑛,𝑥8=𝑥𝑧,𝑥9=𝑥𝑧,𝑥10𝑥=𝑒,,0=𝑥𝑧,𝑥1=𝑧2𝑦,𝑥2=𝑒,𝑥3=𝑦𝑧4𝑦,𝑥4=𝑧𝑛+6𝑦,𝑥5=𝑧2𝑥𝑦,6=𝑧𝑛,𝑥7=𝑧𝑛+4,𝑥8=𝑥𝑧,𝑥9=𝑧2𝑦,𝑥10=𝑒,,(2.37) which have period 8.

Theorem 2.10. The 𝑖th generalized order-2 Lucas lengths of the binary polyhedral group 2,2,𝑛 for every 𝑖 integer such that 1𝑖2 and the generating triple {𝑥,𝑦} are as follows:(i)LEN{𝑥,𝑦}𝑙1,{1}(2,2,𝑛)=LEN{𝑥,𝑦}𝑙1{2}(2,2,𝑛)=6,(ii)LEN{𝑥,𝑦}𝑙2,{1}(2,2,𝑛)=LEN{𝑥,𝑦}𝑙2,{2}(2,2,𝑛)=2(2𝑛).

Proof. We prove the result by direct calculation. We first note that in the group defined by 𝑥,𝑦𝑥2=𝑦2=(𝑥𝑦)𝑛,|𝑥|=4,|𝑦|=4, and |𝑥𝑦|=2𝑛.(i) The orbits 𝑙1,{1}{𝑥,𝑦}(2,2,𝑛) and 𝑙1,{2}{𝑥,𝑦}(2,2,𝑛) are the same and are as follows: 𝑥0=𝑥,𝑥1=𝑦3,𝑥2=𝑥𝑦3,𝑥3=𝑦𝑥𝑦,𝑥4=𝑦3,𝑥5=𝑦𝑥,𝑥6=𝑥,𝑥7=𝑦3,,(2.38) which have period 6.(ii)The orbits 𝑙2,{1}{𝑥,𝑦}(2,2,𝑛) and 𝑙2,{2}{𝑥,𝑦}(2,2,𝑛) are the same and are as follows: 𝑥0=(𝑥𝑦)𝑛1,𝑥1=(𝑥𝑦)𝑛,.(2.39)We consider the recurrence relation defined by the following: 𝑢𝑚=𝑢𝑚2+𝑢𝑚1,𝑢0=𝑛1,𝑢1=𝑛.(2.40) Then a routine induction shows that 𝑥𝑚=(𝑥𝑦)𝑢𝑚. Using Lemma 1.4, we obtain 𝑢𝐿=𝑢0=𝑛1 and  𝑢𝐿+1=𝑢1=𝑛. In this case the equalities 𝑥𝑚=(𝑥𝑦)𝑢𝑚 give 𝑥𝐿=(𝑥𝑦)𝑢𝐿=(𝑥𝑦)𝑛1,𝑥𝐿+1=(𝑥𝑦)𝑢𝐿+1=(𝑥𝑦)𝑛.(2.41) The smallest nontrivial integer satisfying the above conditions occurs when the period is 2(2𝑛).

Theorem 2.11. The 𝑖th generalized order-3 Lucas lengths of the polyhedral group (𝑛,2,2) for every 𝑖 integer such that 1𝑖3 and the generating triple {𝑥,𝑦,𝑧} are as follows:(i)LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}((𝑛,2,2))=6 for 1𝛼1,𝛼22,(ii)LEN{𝑥,𝑦,𝑧}𝑙2,{𝛼1,𝛼2}((𝑛,2,2))=3(𝑛) for 1𝛼1,𝛼22,(iii)(1)LEN{𝑥,𝑦,𝑧}𝑙3,{1,1}((𝑛,2,2))=LEN{𝑥,𝑦,𝑧}𝑙3,{1,2}((𝑛,2,2))=8,(2)LEN{𝑥,𝑦,𝑧}𝑙3,{2,1}((𝑛,2,2))=LEN{𝑥,𝑦,𝑧}𝑙3,{2,2}((𝑛,2,2))=4.

Proof. (i) We follow the proof given in [13].
The proofs of (ii) and (iii) are similar to the proofs of Theorem 2.5(ii) and 2.5(iii) and are omitted.

Theorem 2.12. The 𝑖th generalized order-2 Lucas lengths of the polyhedral group (𝑛,2,2) for every 𝑖 integer such that 1𝑖2 and the generating triple {𝑥,𝑦} are as follows:(i)LEN{𝑥,𝑦}𝑙1,{1}((𝑛,2,2))=LEN{𝑥,𝑦}𝑙1,{2}((𝑛,2,2))=6,(ii)LEN{𝑥,𝑦}𝑙2,{1}((𝑛,2,2))=LEN{𝑥,𝑦}𝑙2,{2}((𝑛,2,2))=3.

Proof. (i) The orbits 𝑙1,{1}((𝑛,2,2)) and 𝑙1,{2}((𝑛,2,2)) are the natural extension of the result of dihedral groups given in [16].
(ii) The orbits 𝑙2,{1}{𝑥,𝑦}((𝑛,2,2)) and 𝑙2,{2}{𝑥,𝑦}((𝑛,2,2)), respectively, are as follows: 𝑥0=𝑥𝑦,𝑥1=𝑒,𝑥2=𝑥𝑦,𝑥3=𝑥𝑦,𝑥4𝑥=𝑒,,0=𝑦𝑥,𝑥1=𝑒,𝑥2=𝑦𝑥,𝑥3=𝑦𝑥,𝑥4=𝑒,,(2.42) which have period 3.

Theorem 2.13. The 𝑖th generalized order-3 Lucas lengths of the polyhedral group (2,𝑛,2) for every 𝑖 integer such that 1𝑖3 and the generating triple {𝑥,𝑦,𝑧} are as follows:(i)LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}((2,𝑛,2))=6 for 1𝛼1,𝛼22,(ii)(1)LEN{𝑥,𝑦,𝑧}𝑙2,{1,1}((2,𝑛,2))=LEN{𝑥,𝑦,𝑧}𝑙2,{2,1}((2,𝑛,2))=4,(2)LEN{𝑥,𝑦,𝑧}𝑙2,{1,2}((2,𝑛,2))=LEN{𝑥,𝑦,𝑧}𝑙2,{2,2}((2,𝑛,2))=8,(iii)LEN{𝑥,𝑦,𝑧}𝑙3,{𝛼1,𝛼2}((2,𝑛,2))=3(𝑛)for1𝛼1,𝛼22.

Proof. (i) We follow the proof given in [13].
The proofs of (ii) and (iii) are similar to the proofs of Theorem 2.5(ii) and 2.5(iii) and are omitted.

Theorem 2.14. The 𝑖th generalized order-2 Lucas lengths of the polyhedral group (2,𝑛,2) for every 𝑖 such that 1𝑖2 and the generating pair {𝑥,𝑦} are 6.

 Proof . The proof is similar to the proof of Theorem 2.6 and is omitted.

Theorem 2.15. The 𝑖th generalized order-3 Lucas lengths of the polyhedral group (2,2,𝑛) for every 𝑖 integer such that 1𝑖3 and the generating triple {𝑥,𝑦,𝑧} are as follows:(i)LEN{𝑥,𝑦,𝑧}𝑙1,{𝛼1,𝛼2}(2,2,𝑛)=2𝑛if𝑛0mod4,4𝑛if𝑛2mod4,8𝑛otherwise,𝑓𝑜𝑟1𝛼1,𝛼22(2.43)(ii)LEN{𝑥,𝑦,𝑧}𝑙2,{𝛼1,𝛼2}𝑛((2,2,𝑛))=if𝑛0mod8,2𝑛if𝑛4mod8,4𝑛if𝑛2mod8,8𝑛otherwise,𝑓𝑜𝑟1𝛼1,𝛼22(2.44)(iii)(1)LEN{𝑥,𝑦,𝑧}𝑙3,{1,1}((2,2,𝑛))=LEN{𝑥,𝑦,𝑧}𝑙3,{1,2}=((2,2,𝑛))LEN{𝑥,𝑦,𝑧}𝑙3,{2,2}((2,2,𝑛))=8,(2.45)(2)LEN{𝑥,𝑦,𝑧}𝑙3,{2,1}((2,2,𝑛))=4.(2.46)

Proof. The proof is similar to the proof of Theorem 2.9 and is omitted.

Theorem 2.16. The 𝑖th generalized order-2 Lucas lengths of the polyhedral group (2,2,𝑛) for every 𝑖 integer such that 1𝑖2 and the generating triple {𝑥,𝑦} are as follows:(i)LEN{𝑥,𝑦}𝑙1,{1}((2,2,𝑛))=LEN{𝑥,𝑦}𝑙1,{2}((2,2,𝑛))=6,(ii)LEN{𝑥,𝑦}𝑙2,{1}((2,2,𝑛))=LEN{𝑥,𝑦}𝑙2,{2}((2,2,𝑛))=2(𝑛).

Proof. (i) The orbits 𝑙1,{1}((2,2,𝑛)) and 𝑙1,{2}((2,2,𝑛)) are the natural extension of the result of dihedral groups given in [16].
(ii) The proof is similar to the proof of Theorem 2.10(ii) and is omitted.

Acknowledgment

This Project was supported by the Commission for the Scientific Research Projects of Kafkas University. The Project number is 2010-FEF-61.