Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 489849, 18 pages
http://dx.doi.org/10.1155/2012/489849
Research Article

Analytical and Semi-Analytical Treatment of the Satellite Motion in a Resisting Medium

1Department of Applied Mathematics, Faculty of Applied Science, Taibah University, Al-Madina-Al Munawwarah, Saudi Arabia
2Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
3Department of Mathematics, Faculty of Science, Taibah University, Al-Madina-Al Munwwarah, Saudi Arabia
4Department of Astronomy, Faculty of Science, Cairo University, Cairo 12613, Egypt

Received 11 August 2011; Revised 8 October 2011; Accepted 17 October 2011

Academic Editor: Pablo González-Vera

Copyright © 2012 S. E. Abd El-Bar and F. A. Abd El-Salam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Newton, Philosophiae Naturalis Principia Mathematica, Book 2, Section 4, University of California Press, Berkeley, Calif, USA, 1934, English translation by F. Cajori, Newton.s Principia.
  2. P. S. Laplace, Traité de Mécanique Céleste, Tom 4, Par 2 Courcier, 1805.
  3. D. Brouwer, “Review of celestial mechanics,” Annual Review of Astronomy and Astrophysics, vol. 1, pp. 219–234, 1963. View at Google Scholar
  4. D. G. King-Hele, Theory of Satellite Orbits in an Atmosphere, Butterworth, London, UK, 1964.
  5. D. G. King-Hele, A Tapestry of Orbits, Cambridge University Press, Cambridge, UK, 1992.
  6. D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics, Academic Press, New York, NY, USA, 1961.
  7. V. A. Chobotov, Ed., Orbital Mechanics, AIAA, Washington, DC, USA, 1991.
  8. D. Boccaletti and G. Pucacco, Theory of Orbits. Vol. 1, Springer, Berlin, Germany, 1996. View at Zentralblatt MATH
  9. P. D. Van Kamp, Principles of Astronomy, Freemann & Co., San Francisco, Calif, USA, 1967.
  10. R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, Reston, Va, usa, 1999. View at Zentralblatt MATH
  11. S. Herrick, Astrodynamics. Vol. 2, Van Nostrand Reinhold, London, uk, 1972. View at Zentralblatt MATH
  12. D. A. Vallado, Fundamentals of Astrodynamics and Applications, Springer, Berlin, Germany, 3rd edition, 2007. View at Zentralblatt MATH
  13. J. Meeus, Astronomical Algorithms, Willmann-Bell, Richmond, Va, USA, 1991.
  14. O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications, Springer, Heidelberg, Germany, 2000.
  15. G. Seeber, Satellite Geodesy: Foundations, Methods, and Applications, Walter de Gruyter, Berlin, Germany, 2003.
  16. G. Xu, GPS—Theory, Algorithms and Applications, Springer, Heidelberg, Germany, 2nd edition, 2007.
  17. G. Xu, Orbits, Springer, Heidelberg, Germany, 2008.
  18. G. Xu, T. H. Xu, T. K. Yeh, and W. Chen, “Analytic solution of satellite orbit disturbed by atmospheric drag,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 1, pp. 654–662, 2010. View at Google Scholar
  19. C. Cui, Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C, 357, 1990.
  20. M. Schneider and C. F. Cui, Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe A: Theoretische Geodäsie, 121, 2005.
  21. S. M. Kudryavtsev, “Long-term harmonic development of lunar ephemeris,” Astronomy & Astrophysics, vol. 471, pp. 1069–1075, 2007. View at Google Scholar
  22. J. Licandro, A. Alvarez-Candal, J. De León, N. Pinilla-Alonso, D. Lazzaro, and H. Campins, “Spectral properties of asteroids in cometary orbits,” Astronomy and Astrophysics, vol. 481, no. 3, pp. 861–877, 2008. View at Publisher · View at Google Scholar
  23. A. Pál, “An analytical solution for Kepler's problem,” Monthly Notices of the Royal Astronomical Society, vol. 396, no. 3, pp. 1737–1742, 2009. View at Publisher · View at Google Scholar
  24. D. Lynden-Bell, “Analytic orbits in any central potential,” Monthly Notices of the Royal Astronomical Society, vol. 402, no. 3, pp. 1937–1941, 2010. View at Publisher · View at Google Scholar
  25. W. Torge, Geodesy, Walter de Gruyter, Berlin, Germany, 1991.
  26. J. Desmars, S. Arlot, J.-E. Arlot, V. Lainey, and A. Vienne, “Estimating the accuracy of satellite ephemerides using the bootstrap method,” Astronomy and Astrophysics, vol. 499, no. 1, pp. 321–330, 2009. View at Publisher · View at Google Scholar
  27. J. R. Touma, S. Tremaine, and M. V. Kazandjian, “Gauss's method for secular dynamics, softened,” Monthly Notices of the Royal Astronomical Society, vol. 394, no. 2, pp. 1085–1108, 2009. View at Google Scholar
  28. A. Bezdeka and D. Vokrouhlicky, “Semianalytic theory of motion for close-Earth spherical satellites includingdragand gravitational perturbations,” Planetary and Space Science, vol. 52, pp. 1233–1249, 2004. View at Google Scholar
  29. G. Xu, X. Tianhe, W. Chen, and T.-K. Yeh, “Analytical solution of a satellite orbit disturbed by atmospheric drag,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 1, pp. 654–662, 2011. View at Publisher · View at Google Scholar
  30. L. Sehnal, “Dynamics and Astrometry of natural and artificial celestial bodies,” in Proceedings of the Conference on Astrometry and Celestial Mechanics, pp. 325–332, Poznan, Poland, 1994.
  31. P. M. Fitzpatrick, Principles Of Celestial Mechancics, Academic Press, London, UK, 1970.
  32. F.A. Abd El- Salam and S. Abd El-Bar, “Computation of the different errors in the ballistic missiles range,” Journal of the Applied Mathematics, vol. 2011, Article ID 349737, 16 pages, 2011. View at Publisher · View at Google Scholar
  33. R. K. Sharma and L. Mani, “Study of RS-1 orbital decay with KS differential equations,” Indian Journal of Pure and Applied Mathematics, vol. 6, pp. 833–842, 1985. View at Google Scholar