Abstract

We present a combined homotopy interior-point method for a general multiobjective programming problem. For solving the KKT points of the multiobjective programming problem, the homotopy equation is constructed. We prove the existence and convergence of a smooth homotopy path from almost any initial interior point to a solution of the KKT system under some basic assumptions.

1. Introduction

We consider the following multiobjective programming problem:min𝑓(π‘₯),s.t.𝑔(π‘₯)≀0,β„Ž(π‘₯)=0,(MOP) where 𝑓=(𝑓1,𝑓2,…,𝑓𝑝)π‘‡βˆΆπ‘…π‘›β†’π‘…π‘, 𝑔=(𝑔1,𝑔2,…,π‘”π‘š)π‘‡βˆΆπ‘…π‘›β†’π‘…π‘š and β„Ž=(β„Ž1,β„Ž2,…,β„Žπ‘ )π‘‡βˆΆπ‘…π‘›β†’π‘…π‘ .

Since Kellogg et al. [1] and Smale [2] have published their remarkable papers, more and more attention has been paid to the homotopy method. As a globally convergent method, the homotopy method now becomes an important tool for numerically solving complementary problem and nonlinear mathematical programming problem [3–5].

Among most interior-point methods for solving mathematical programming, one of the main ideas is numerically tracing the center path generated by the optimal solution set of the logarithmic barrier function. Usually, the strict convexity of the logarithmic barrier function or boundedness of the solution set is needed [6, 7]. Lin et al. [8] presented a new interior-point method, combined homotopy interior-point method (CHIP method), for convex nonlinear programming. Subsequently, Lin et al. [9] generalized the CHIP method to convex multi-objective programming with only inequality constraints. Recently, Song and Yao [10] generalized the combined homotopy interior-point method to the general multiobjective programming problem under the so-called normal cone condition. In that paper, they proved the existence of the homotopy path under the following assumptions:(A1)Ξ©0 is nonempty and bounded;(A2)for all π‘₯∈Ω, the vectors {βˆ‡π‘”π‘–(π‘₯),π‘–βˆˆπ΅(π‘₯),βˆ‡β„Žπ‘—(π‘₯),π‘—βˆˆπ½} are linearly independent;(A3)for all π‘₯∈Ω, βˆ‘{π‘₯+π‘–βˆˆπ΅(π‘₯)π‘’π‘–βˆ‡π‘”π‘–βˆ‘(π‘₯)+π‘—βˆˆπ½π‘§π‘—βˆ‡β„Žπ‘—(π‘₯)βˆΆπ‘§=(𝑧𝑗)βˆˆπ‘…π‘ ,𝑒𝑖⋂β‰₯0,π‘–βˆˆπ΅(π‘₯)}Ξ©={π‘₯},

where  Ω={π‘₯βˆˆπ‘…π‘›βˆ£π‘”(π‘₯)≦0,β„Ž(π‘₯)=0},Ξ©0={π‘₯βˆˆπ‘…π‘›π‘”βˆ£π‘”(π‘₯)<0,β„Ž(π‘₯)=0},and𝐡(π‘₯)={π‘–βˆˆ{1,2,…,π‘š}βˆ£π‘–(π‘₯)=0}.

In [10], the combined homotopy method was given as follows:π»ξ€·πœ”,πœ”(0)ξ€Έ=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£ξ€·,𝑑(1βˆ’π‘‘)(βˆ‡π‘“(π‘₯)πœ†+βˆ‡π‘”(π‘₯)𝑒)+βˆ‡β„Ž(π‘₯)𝑧+𝑑π‘₯βˆ’π‘₯(0)ξ€Έβ„Ž(π‘₯)π‘ˆΓ—π‘”(π‘₯)βˆ’π‘‘π‘ˆ(0)ξ€·π‘₯×𝑔(0)(1βˆ’π‘‘)1βˆ’π‘ξ“π‘–=1πœ†π‘–ξƒͺξ€·π‘’βˆ’π‘‘πœ†βˆ’πœ†(0)ξ€ΈβŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦=0,(1.1) where π‘₯(0)∈Ω0,𝑒(0)>0,πœ†(0)>0, and βˆ‘π‘π‘–=1πœ†π‘–(0)=1. However, the solution simply yields πœ†=πœ†(0) for all π‘‘βˆˆ(0,1]. In fact, from the last equation, we have βˆ‘π‘(1βˆ’π‘‘)+(π‘π‘‘βˆ’π‘βˆ’π‘‘)𝑝𝑖=1πœ†π‘–+𝑑=0. According to this, we know that πœ†β‰‘πœ†0 for all of π‘‘βˆˆ[0,1]. That is, the method given in [10] just solves the single-objective programming problem.

The purpose of this paper is to generalize the combined homotopy interior-point method for a general multiobjective programming problem (MOP) under quasinorm cone condition that weakens the assumptions more than the ones in [10] and constructs a new homotopy equation which is much different and simpler the that one given in [9].

The paper is organized as follows. In Section 2, we recall some notations and preliminaries results. In Section 3, we construct a new combined homotopy mapping and prove the existence and convergence of a smooth homotopy path from almost any interior initial point to a KKT point of MOP under some assumptions. In Section 4, numerical results are given.

2. Some Definitions and Properties

Let 𝑅𝑛+ and 𝑅𝑛++ denote the nonnegative and positive orthants of 𝑅𝑛, respectively. For any two vectors 𝑦=(𝑦1,𝑦2,…,𝑦𝑛)𝑇 and 𝑧=(𝑧1,𝑧2,…,𝑧n)𝑇 in 𝑅𝑛, we use the following conventions:𝑦=𝑧,iff𝑦𝑖=𝑧𝑖,𝑖=1,2,…,𝑛,𝑦<𝑧,iff𝑦𝑖<𝑧𝑖,𝑖=1,2,…,𝑛,𝑦≦𝑧,iff𝑦𝑖≀𝑧𝑖,𝑖=1,2,…,𝑛,𝑦≀𝑧,iff𝑦𝑖≀𝑧𝑖,𝑦≠𝑧,𝑖=1,2,…,𝑛.(2.1) Suppose that 𝑓=(𝑓1,𝑓2,…,𝑓𝑝)π‘‡βˆΆπ‘…π‘›β†’π‘…π‘, 𝑔=(𝑔1,𝑔2,…,π‘”π‘š)π‘‡βˆΆπ‘…π‘›β†’π‘…π‘š, and β„Ž=(β„Ž1,β„Ž2,…,β„Žπ‘ )π‘‡βˆΆπ‘…π‘›β†’π‘…π‘  are three times continuously differentiable functions. LetΞ©={π‘₯βˆˆπ‘…π‘›βˆ£π‘”(π‘₯)≦0,β„Ž(π‘₯)=0},Ξ©0={π‘₯βˆˆπ‘…π‘›Ξ©βˆ£π‘”(π‘₯)<0,β„Ž(π‘₯)=0},πœ•Ξ©=Ξ©0,Ξ›+=ξƒ―πœ†βˆˆπ‘…π‘+βˆ£π‘ξ“π‘–=1πœ†π‘–ξƒ°=1,Ξ›++=ξƒ―πœ†βˆˆπ‘…π‘++βˆ£π‘ξ“π‘–=1πœ†π‘–ξƒ°,=1𝐼={1,2,…,π‘š},𝐽={1,2,…,𝑠},(2.2) and let𝐡(π‘₯)=π‘–βˆˆ{1,2,…,π‘š}𝑔𝑖(π‘₯)=0(2.3) denote the active index set at a given point.

Definition 2.1. A point π‘₯∈Ω is said to be an efficient solution to multiobjective programming problem (MOP), if there is no π‘¦βˆˆΞ© such that 𝑓(𝑦)≀𝑓(π‘₯) holds.

Definition 2.2. Let π‘ˆβŠ‚π‘…π‘› be an open set, and let πœ‘βˆΆπ‘ˆβ†’π‘…π‘ƒ be a smooth mapping. If Range [πœ•πœ‘(π‘₯)/πœ•π‘₯]=𝑅𝑝 for all π‘₯βˆˆπœ‘βˆ’1(𝑦), then π‘¦βˆˆπ‘…π‘ is a regular value and π‘₯βˆˆπ‘…π‘› is a regular point.

Definition 2.3. Let πœ‚π‘–βˆΆπ‘…π‘›β†’π‘…π‘›(𝑖=1,2,…,π‘š). For any π‘₯∈Ω,{πœ‚π‘–(π‘₯)βˆΆπ‘–βˆˆπ΅(π‘₯)} is said to be positive linear independent with respect to βˆ‡π‘”(π‘₯)𝑛 and βˆ‡β„Ž(π‘₯) if ξ“βˆ‡β„Ž(π‘₯)𝑧+π‘–βˆˆπ΅(π‘₯)ξ€·π‘¦π‘–βˆ‡π‘”π‘–(π‘₯)+π‘’π‘–πœ‚π‘–(ξ€Έπ‘₯)=0,π‘§βˆˆπ‘…π‘ ,𝑦𝑖β‰₯0,𝑒𝑖β‰₯0(π‘–βˆˆπ΅(π‘₯))(2.4) implies that 𝑧=0,𝑦𝑖=0,𝑒𝑖=0(π‘–βˆˆπ΅(π‘₯)).(2.5)

Lemma 2.4 (parametric form of the Sard Theorem on a smooth manifold; see [11]). Let 𝑄,𝑁and 𝑃 be smooth manifolds of dimensions π‘ž,π‘š and 𝑝. Respectively, let πœ‘βˆΆπ‘„Γ—π‘β†’π‘ƒ be a 𝐢r map, where π‘Ÿ>max{0,π‘šβˆ’π‘}. If 0βˆˆπ‘ƒ is a regular value of πœ‘, then for almost all π›Όβˆˆπ‘„, 0 is a regular value of πœ‘(𝛼,β‹…).

Lemma 2.5 (inverse image theorem; see [12]). If 0 is a regular value of the mapping πœ‘π›Ό(β‹…)β‰œπœ‘(𝛼,β‹…), then πœ‘π›Όβˆ’1(0) consists of some smooth manifolds.

Lemma 2.6 (classification theorem of one-dimensional manifold; see [12]). A one-dimensional smooth manifold is diffeomorphic to a unit circle or a unit interval.
The following three basic assumptions are commonly used in this paper: (C1)Ξ©0 is nonempty and bounded;(C2)for any π‘₯∈Ω, there exists a positive linear independent map πœ‚(π‘₯) with respect to βˆ‡π‘”(π‘₯) and βˆ‡β„Ž(π‘₯) such that, {πœ‚i(π‘₯)βˆΆπ‘–βˆˆπ΅(π‘₯)} is positive linear independent with respect to βˆ‡π‘”(π‘₯) and βˆ‡β„Ž(π‘₯);(C3)for any π‘₯βˆˆπœ•Ξ©, there exists a positive linear independent map πœ‚(π‘₯) with respect to βˆ‡π‘”(π‘₯) and βˆ‡β„Ž(π‘₯), such thatπ‘₯+π‘–βˆˆπ΅(π‘₯)𝑒iπœ‚i(π‘₯)+π‘—βˆˆπ½π‘§jβˆ‡β„Žj(π‘₯)βˆΆπ‘§jβˆˆπ‘…,π‘—βˆˆ{𝐽},𝑒iβ‰₯0,π‘–βˆˆπ΅(π‘₯)Ξ©={π‘₯}(2.6) (quasinormal cone condition).

Remark 2.7. If Ξ© satisfies assumptions (A1)–(A3), then it necessarily satisfies assumptions (C1)–(C3).
In fact, if we choose πœ‚(π‘₯)=βˆ‡π‘”(π‘₯), then it is easy to get the result. Clearly, if Ξ© satisfies assumptions (C1)–(C3), then it does not necessarily satisfies assumptions (A1)–(A3).

3. Main Results

Let π‘₯∈Ω. We say that π‘₯ is a KKT point of (MOP) if there exists (πœ†,𝑒,𝑧)βˆˆπ‘…+𝑝+π‘šΓ—π‘…π‘ , such thatβˆ‡π‘“(π‘₯)πœ†+βˆ‡π‘”(π‘₯)𝑒+βˆ‡β„Ž(π‘₯)𝑧=0,(3.1a)π‘ˆπ‘”(π‘₯)=0,(3.1b)1βˆ’π‘ξ“π‘–=1πœ†π‘–=0,(3.1c)where βˆ‡π‘“(π‘₯)=(βˆ‡π‘“1(π‘₯),…,βˆ‡π‘“π‘(π‘₯))βˆˆπ‘…π‘›Γ—π‘, βˆ‡π‘”(π‘₯)=(βˆ‡π‘”1(π‘₯),…,βˆ‡π‘”π‘š(π‘₯))βˆˆπ‘…π‘›Γ—π‘š, βˆ‡β„Ž(π‘₯)=(βˆ‡β„Ž1(π‘₯),…,βˆ‡β„Žπ‘š(π‘₯))βˆˆπ‘…π‘›Γ—π‘ .

Meanwhile, the KKT system of MOP is (3.1a)–(3.1c).

For a convex multiobjective programming problem, the solution of the MOP can be obtained from the KKT system, and for a non-convex multi-objective programming problem, it is significant when we get a solution of the KKT system.

To solve the KKT system (3.1a)–(3.1c),  we construct a homotopy equation as follows:π»ξ€·πœ”,πœ”(0)ξ€Έ=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ’βŽ£ξ€·,𝑑(1βˆ’π‘‘)βˆ‡π‘“(π‘₯)πœ†+βˆ‡π‘”(π‘₯)𝑒+π‘‘πœ‚(π‘₯)𝑒2ξ€Έξ€·+βˆ‡β„Ž(π‘₯)𝑧+𝑑π‘₯βˆ’π‘₯(0)ξ€Έβ„Ž(π‘₯)π‘ˆΓ—π‘”(π‘₯)βˆ’π‘‘π‘ˆ(0)ξ€·π‘₯×𝑔(0)(1βˆ’π‘‘)1βˆ’π‘ξ“π‘–=1πœ†π‘–ξƒͺξ‚€πœ†π‘’βˆ’π‘‘5/2βˆ’ξ€·πœ†(0)ξ€Έ5/2ξ‚βŽ€βŽ₯βŽ₯βŽ₯βŽ₯βŽ₯⎦=0,(3.2) where πœ”(0)=(π‘₯(0),πœ†(0),𝑒(0),𝑧(0))∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, πœ”=(π‘₯,πœ†,𝑒,𝑧)βˆˆπ‘…π‘›Γ—π‘…π‘Γ—π‘…π‘šΓ—π‘…π‘ , 𝑒2=(𝑒21,𝑒22…,𝑒2π‘š)π‘‡βˆˆπ‘…π‘š, πœ†5/2=(πœ†15/2,πœ†25/2,…,πœ†π‘5/2)π‘‡βˆˆπ‘…π‘, π‘ˆ=diag(𝑒), 𝑒=(1,1,…,1)π‘‡βˆˆπ‘…π‘ and π‘‘βˆˆ[0,1].

When 𝑑=1, the homotopy equation (3.2) becomesξ€·βˆ‡β„Ž(π‘₯)𝑧+π‘₯βˆ’π‘₯(0)ξ€Έ=0,(3.3a)β„Ž(π‘₯)=0,(3.3b)π‘ˆπ‘”(π‘₯)βˆ’π‘ˆ(0)𝑔π‘₯(0)ξ€Έπœ†=0,(3.3c)5/2=ξ€·πœ†(0)ξ€Έ5/2.(3.3d)

By assumption (𝐢3), we get 𝑧=0,π‘₯=π‘₯(0). Since 𝑔(π‘₯(0))<0, (3.3c) implies that 𝑒=𝑒(0). Equation (3.3d) shows that πœ†=πœ†(0). That is, the equation 𝐻(πœ”,πœ”(0),1)=0 with respect to πœ” has only one solution πœ”=πœ”(0)=(π‘₯(0),πœ†(0),𝑒(0),0).

When 𝑑=0, 𝐻(πœ”,πœ”(0),𝑑)=0 turns to the KKT system (3.1a)–(3.1c).

For a given πœ”(0), rewrite 𝐻(πœ”,πœ”(0),𝑑) as π»πœ”(0)(πœ”,𝑑). The zero-point set of π»πœ”(0) isπ»πœ”βˆ’1(0)=ξ€½(πœ”,𝑑)βˆˆΞ©Γ—π‘…π‘+π‘š++×𝑅𝑠]ξ€·Γ—(0,1βˆΆπ»πœ”,πœ”(0)ξ€Έξ€Ύ.,𝑑=0(3.4)

Theorem 3.1. Suppose that 𝐻 is defined as in (3.2) and let 𝑓,𝑔, and β„Ž be three times continuously differentiable functions. In addition, let assumptions (C1)–(C3)  hold, and let πœ‚i be two times continuously differentiable function. Then, for almost all initial points πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, 0 is a regular value of π»πœ”(0) and π»πœ”βˆ’1(0) consists of some smooth curves. Among them, a smooth curve, say Ξ“πœ”(0), is starting from (πœ”(0),1).

Proof. Denote the Jacobi matrix of 𝐻(πœ”,πœ”(0),𝑑) by 𝐷𝐻(πœ”,πœ”(0),𝑑). For any πœ”(0)∈Ω and π‘‘βˆˆ[0,1], we have 𝐷𝐻(πœ”,πœ”(0),𝑑)=(πœ•π»/πœ•πœ”,πœ•π»/πœ•πœ”(0),πœ•π»/πœ•π‘‘). Now, we consider the submatrix of 𝐷𝐻(πœ”,πœ”(0),𝑑).
For any (π‘₯,π‘₯(0),πœ†(0),𝑒(0))βˆˆπ‘…π‘›Γ—Ξ©0Γ—Ξ›++Γ—π‘…π‘š++, πœ•π»πœ•ξ€·π‘₯,π‘₯(0),πœ†(0),𝑒(0)ξ€Έ=βŽ‘βŽ’βŽ’βŽ’βŽ’βŽ£π‘„βˆ’π‘‘πΌπ‘›00βˆ‡β„Ž(π‘₯)𝑇000π‘ˆβˆ‡π‘”(π‘₯)π‘‡βˆ’π‘‘π‘ˆ(0)ξ€·π‘₯βˆ‡π‘”(0)𝑇𝑔π‘₯0βˆ’π‘‘diag(0)5ξ€Έξ€Έ002π‘‘ξ€·πœ†(0)ξ€Έ3/2𝐼𝑝0⎀βŽ₯βŽ₯βŽ₯βŽ₯⎦,(3.5) where βˆ‘π‘„=(1βˆ’π‘‘)(𝑝𝑖=1πœ†π‘–βˆ‡2π‘“π‘–βˆ‘(π‘₯)+π‘šπ‘—=1π‘’π‘—βˆ‡2π‘”π‘—βˆ‘(π‘₯)+π‘‘π‘šπ‘—=1𝑒2π‘—βˆ‡πœ‚π‘—βˆ‘(π‘₯))+π‘ π‘˜=1π‘§π‘˜βˆ‡2β„Žπ‘˜(π‘₯)+𝑑𝐼𝑛.
We obtain that rankπœ•π»πœ•ξ€·π‘₯,π‘₯(0),πœ†(0),𝑒(0)ξ€Έ=𝑛+𝑝+π‘š+𝑠.(3.6)
That is, 0 is a regular value of 𝐻. By the parametric form of the Sard theorem, for almost all πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, 0 is a regular value of π»πœ”(0). By the inverse image theorem, π»πœ”βˆ’1(0)(0) consists of some smooth curves. Since 𝐻(πœ”(0),πœ”(0),1)=0, there must be a smooth curve, denoted by Ξ“πœ”(0), starting from (πœ”(0),1).

Theorem 3.2. Let assumptions (C1)-(C2)  hold. For a given πœ”(0)=(π‘₯(0),πœ†(0),𝑒(0),𝑧(0))∈Ω0Γ—Ξ›++×𝑅m++Γ—{0}, if 0 is a regular value of π»πœ”(0), then the projection of the smooth curve Ξ“πœ”(0) on the component πœ† is bounded.

Proof. Suppose that the conclusion does not hold. Since (0,1] is bounded, there exists a sequence {(πœ”(π‘˜),π‘‘π‘˜)}βŠ‚Ξ“πœ”(0) such that π‘‘π‘˜βŸΆπ‘‘βˆ—,β€–β€–πœ†(π‘˜)β€–β€–βŸΆβˆž.(3.7)
From the last equality of (3.2), we have βŽ›βŽœβŽœβŽ1βˆ’π‘‘π‘˜1βˆ’π‘‘π‘˜β‹―1βˆ’π‘‘π‘˜βŽžβŽŸβŽŸβŽ βˆ’βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽξ€·1βˆ’π‘‘π‘˜ξ€Έπœ†1(π‘˜)+ξ€·1βˆ’π‘‘π‘˜ξ€Έξ“π‘–β‰ 1πœ†π‘–(π‘˜)+π‘‘π‘˜ξ‚€πœ†1(π‘˜)5/2ξ€·1βˆ’π‘‘π‘˜ξ€Έπœ†2(π‘˜)+ξ€·1βˆ’π‘‘π‘˜ξ€Έξ“π‘–β‰ 2πœ†π‘–(π‘˜)+π‘‘π‘˜ξ‚€πœ†2(π‘˜)5/2β‹―ξ€·1βˆ’π‘‘π‘˜ξ€Έπœ†π‘(π‘˜)+ξ€·1βˆ’π‘‘π‘˜ξ€Έξ“π‘–β‰ π‘πœ†π‘–(π‘˜)+π‘‘π‘˜ξ‚€πœ†π‘(π‘˜)5/2βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ βˆ’π‘‘π‘˜βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽξ‚€πœ†1(0)5/2ξ‚€πœ†2(0)5/2β‹―ξ‚€πœ†π‘(0)5/2⎞⎟⎟⎟⎟⎟⎟⎠=0.(3.8)
If we assume β€–πœ†(π‘˜)β€–β†’+∞(π‘˜β†’βˆž), this hypothesis implies that ξ‚»π‘–βˆˆ{1,2,…,𝑝}∢limπ‘˜β†’βˆžπœ†π‘–(π‘˜)ξ‚Ό=βˆžβ‰ Ξ¦.(3.9)
Since π‘‘π‘˜β†’π‘‘βˆ—, πœ†(π‘˜)>0, it follows that the second part in the left-hand side of some equations in (3.8) tends to infinity as π‘˜β†’βˆž. But the other two parts are bounded. This is impossible. Thus, the component πœ† is bounded.

Theorem 3.3. Let 𝑓,𝑔, and β„Ž be three times continuously differentiable functions. In addition, let assumptions (C1)–(C3) hold, and let πœ‚π‘– be two times continuously differentiable function. Then, for almost all of πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0}, π»πœ”βˆ’1(0)(0) contains a smooth curve Ξ“πœ”(0)βŠ‚Ξ©Γ—π‘…π‘+Γ—π‘…π‘š+×𝑅𝑠×(0,1], which starts from (πœ”(0),1). As 𝑑→0, the limit set 𝑇×{0}βŠ‚Ξ©Γ—Ξ›+Γ—π‘…π‘š+×𝑅𝑠×{0}  of Ξ“πœ”(0) is nonempty and every point in 𝑇 is a solution of the KKT system (3.1a)–(3.1c).

Proof. From the homotopy equation (3.2), it is easy to see that Ξ“πœ”(0)βŠ‚Ξ©Γ—π‘…π‘+Γ—π‘…π‘š+×𝑅𝑠×(0,1].  By Theorem 3.1, for almost all πœ”(0)∈Ω0Γ—Ξ›++Γ—π‘…π‘š++Γ—{0},  0 is a regular value of π»πœ”(0) and π»πœ”βˆ’1(0) contains of a smooth curve Ξ“πœ”(0) starting from (πœ”(0),1). By the classification theorem of one-dimensional smooth manifolds, Ξ“πœ”(0) is diffeomorphic to a unit circle or the unit interval (0,1].
Noticing that ||||πœ•π»πœ”(0)ξ€·πœ”(0)ξ€Έ,1||||=|||||||||πΌπœ•πœ”π‘›ξ€·π‘₯00βˆ‡β„Ž(0)ξ€Έξ€·π‘₯βˆ‡β„Ž(0)ξ€Έπ‘‡π‘ˆ000(0)ξ€·π‘₯βˆ‡π‘”(0)𝑇𝑔π‘₯0diag(0)05ξ€Έξ€Έ0βˆ’2ξ€·πœ†(0)ξ€Έ3/2𝐼𝑝|||||||||00=(βˆ’1)𝑠|||𝑔π‘₯diag(0)β€–β€–β€–βˆ’5ξ€Έξ€Έ2ξ€·πœ†(0)ξ€Έ3/2𝐼𝑝‖‖‖π‘₯βˆ‡β„Ž(0)𝑇π‘₯βˆ‡β„Ž(0)ξ€Έ|||,(3.10)
By assumption (C2), we know that |βˆ‡β„Ž(π‘₯(0))π‘‡βˆ‡β„Ž(π‘₯(0))|β‰ 0. And because 𝑔(π‘₯(0))<0,πœ†(0)βˆˆΞ›++, we obtain that [πœ•π»πœ”(0)(πœ”(0),1)/πœ•πœ”]  is nonsingular. Therefore, the smooth curve Ξ“πœ”(0), which starts from (πœ”(0),1), is diffeomorphic to (0,1].
Let (πœ”βˆ—,π‘‘βˆ—) be a limit point of Ξ“πœ”(0). Only three cases are possible:(a)(πœ”βˆ—,π‘‘βˆ—)βˆˆΞ©Γ—Ξ›+Γ—π‘…π‘š+×𝑅𝑠×{0}, (b)(πœ”βˆ—,π‘‘βˆ—)βˆˆπœ•(Ξ©0×𝑅+𝑝+π‘š)×𝑅𝑠×(0,1], (c)(πœ”βˆ—,π‘‘βˆ—)βˆˆΞ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘ Γ—{1}.
Because 𝐻(πœ”(0),πœ”(0),1)=0 has a unique solution (πœ”(0),1), case (c) will not happen.
In case (b), because Ξ© and (0,1] are bounded sets and by assumption (C2), for any π‘₯∈Ω, there exists a positive linear independent map πœ‚(π‘₯) with respect to βˆ‡π‘”(π‘₯) and βˆ‡β„Ž(π‘₯) such that {πœ‚π‘–(π‘₯)βˆΆπ‘–βˆˆπ΅(π‘₯)} is positive linear independent with respect to βˆ‡π‘”(π‘₯) and βˆ‡β„Ž(π‘₯). From the first equality of (3.2), we get that the component 𝑧 of Ξ“πœ”(0) is bounded.
If case (b) holds, then there exists a sequence {(πœ”(π‘˜),π‘‘π‘˜)}βŠ‚Ξ“πœ”(0) such that β€–β€–ξ€·πœ”(π‘˜),π‘‘π‘˜ξ€Έβ€–β€–βŸΆβˆž.(3.11)
Because Ξ© and (0,1] are bounded and by Theorem 3.2, there exists a sequence (denoted also by {(πœ”(π‘˜),π‘‘π‘˜)}βŠ‚Ξ“πœ”(0)) such that π‘₯(π‘˜)⟢π‘₯βˆ—,πœ†(π‘˜)βŸΆπœ†βˆ—,‖‖𝑒(π‘˜)β€–β€–βŸΆβˆž,𝑧(π‘˜)βŸΆπ‘§βˆ—,π‘‘π‘˜βŸΆπ‘‘βˆ—,asπ‘˜βŸΆβˆž.(3.12)
From the third equality of (3.2), we have 𝑔π‘₯(π‘˜)ξ€Έ=π‘‘π‘˜ξ€·π‘ˆ(π‘˜)ξ€Έβˆ’1π‘ˆ(0)𝑔π‘₯(0)ξ€Έ.(3.13) Hence, the active index set 𝐡(π‘₯βˆ—) is nonempty.
From the homotopy equation (3.2), it follows that ξ€·1βˆ’π‘‘π‘˜ξ€Έξ‚€ξ€·π‘₯βˆ‡π‘“(π‘˜)ξ€Έπœ†(π‘˜)ξ€·π‘₯+βˆ‡π‘”(π‘˜)𝑒(π‘˜)+π‘‘π‘˜πœ‚ξ€·π‘₯(π‘˜)𝑒(π‘˜)ξ€Έ2π‘₯+βˆ‡β„Ž(π‘˜)𝑧(π‘˜)+π‘‘π‘˜ξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έ=0.(3.14) (i)When π‘‘βˆ—=1, rewrite (3.14) asβˆ‘π‘—βˆˆπ΅(π‘₯βˆ—)ξ€·1βˆ’π‘‘π‘˜ξ€Έξ‚΅βˆ‡π‘”jξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ‚Άξ€·π‘₯+βˆ‡β„Ž(π‘˜)𝑧(π‘˜)+ξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έξ€·=βˆ’1βˆ’π‘‘π‘˜ξ€Έξƒ¬βˆ‘π‘—βˆ‰π΅(π‘₯βˆ—)βˆ‡π‘”π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ€·π‘₯+βˆ‡π‘“(π‘˜)ξ€Έπœ†(π‘˜)βˆ’ξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έξƒ­.(3.15)
Because {𝑒𝑗(π‘˜)},π‘—βˆ‰π΅(π‘₯βˆ—), are bounded and by assumption (𝐢1), when π‘˜β†’βˆž, we observe that limπ‘˜β†’βˆžξƒ©ξ“π‘—βˆˆπ΅(π‘₯βˆ—)ξ€·1βˆ’π‘‘π‘˜ξ€Έξ‚΅βˆ‡π‘”π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ‚Άξ€·π‘₯+βˆ‡β„Ž(π‘˜)𝑧(π‘˜)+ξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έξƒͺ=0.(3.16)
Using π‘₯(π‘˜)β†’π‘₯βˆ— and 𝑧(π‘˜)β†’π‘§βˆ—(π‘˜β†’βˆž), we have from (3.16) that ξ“π‘—βˆˆπ΅(π‘₯βˆ—)ξ‚΅βˆ‡π‘”π‘—ξ€·π‘₯βˆ—ξ€Έlimπ‘˜β†’βˆžξ€·1βˆ’π‘‘π‘˜ξ€Έπ‘’π‘—(π‘˜)+πœ‚π‘—ξ€·π‘₯βˆ—ξ€Έlimπ‘˜β†’βˆžξ€·1βˆ’π‘‘π‘˜ξ€Έπ‘‘π‘˜ξ‚€π‘’π‘—(π‘˜)2ξ‚Άξ€·ξ€·π‘₯=βˆ’βˆ‡β„Žβˆ—ξ€Έπ‘§βˆ—+π‘₯βˆ—βˆ’π‘₯(0)ξ€Έ.(3.17)
It is easy to see that the right-hand side of (3.17) is bounded. By assumption (C2) and (3.17), we get limπ‘˜β†’βˆžξ€·1βˆ’π‘‘π‘˜ξ€Έπ‘’π‘—(π‘˜)=0,limπ‘˜β†’βˆžξ€·1βˆ’π‘‘π‘˜ξ€Έπ‘‘π‘˜ξ‚€π‘’π‘—(π‘˜)2=𝛼𝑗π‘₯,π‘—βˆˆπ΅βˆ—ξ€Έ,(3.18) where 𝛼𝑗β‰₯0.
Then, we have π‘₯(0)=π‘₯βˆ—ξ€·π‘₯+βˆ‡β„Žβˆ—ξ€Έπ‘§βˆ—+ξ“π‘—βˆˆπ΅(π‘₯βˆ—)π›Όπ‘—πœ‚π‘—ξ€·π‘₯βˆ—ξ€Έ,(3.19) which contradicts assumption (𝐢3).
(ii)When π‘‘βˆ—βˆˆ[0,1), rewrite (3.14) asξ“π‘—βˆˆπ΅(π‘₯βˆ—)ξ€·1βˆ’π‘‘π‘˜ξ€Έξ‚΅βˆ‡π‘”π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ‚Άξ€·=βˆ’1βˆ’π‘‘π‘˜ξ€Έξƒ¬ξ“π‘—βˆ‰π΅(π‘₯βˆ—)ξ‚΅βˆ‡π‘”π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)+π‘‘π‘˜πœ‚π‘—ξ€·π‘₯(π‘˜)𝑒𝑗(π‘˜)2ξ‚Άξ€·π‘₯+βˆ‡π‘“(π‘˜)ξ€Έπœ†(π‘˜)ξƒ­βˆ’π‘‘kξ€·π‘₯(π‘˜)βˆ’π‘₯(0)ξ€Έξ€·π‘₯βˆ’βˆ‡β„Ž(π‘˜)𝑧(π‘˜).(3.20)
We know that, since Ξ© and {𝑒𝑗(π‘˜)},π‘—βˆ‰π΅(π‘₯βˆ—) are bounded as π‘˜β†’βˆž, the right-hand side of (3.20) is bounded. But by assumptions (C2) and (𝐢3), if 𝑒𝑗(π‘˜)β†’βˆž(π‘—βˆˆπ΅(π‘₯βˆ—)), then the left-hand side of (3.20) is infinite, this is a contradiction.
As a conclusion, (a) is the only possible case, and πœ”βˆ— is a solution of the KKT system (3.1a)–(3.1c).
Let 𝑠 be the arc-length of Ξ“πœ”(0). We can parameterize Ξ“πœ”(0) with respect to 𝑠.

Theorem 3.4. The homotopy path Ξ“πœ”(0) is determined by the following initial-value problem for the ordinary differential equation: π·π»πœ”(0)βŽ‘βŽ’βŽ’βŽ£β‹…πœ”β‹…πœ‡βŽ€βŽ₯βŽ₯⎦(πœ”(𝑠),𝑑(𝑠))=0,πœ”(0)=πœ”(0),𝑑(0)=1.(3.21) The component πœ”βˆ— of the solution point (πœ”(π‘ βˆ—),𝑑(π‘ βˆ—)), for 𝑑(π‘ βˆ—)=0, is a solution of the KKT system.

4. Algorithm and Example

The following algorithm describes the numerical computation for Pareto optimal solutions.

Algorithm 4.1 ((MOP) Euler-Newton method). Step 1. Give an initial point (πœ”(0),1)∈Ω0×𝑅𝑝+π‘š++Γ—{0}Γ—{1}, an initial step length β„Ž0>0, and three small positive numbers πœ€1,πœ€2,πœ€3. Let π‘˜βˆΆ=0.Step 2. Compute the direction 𝛾(π‘˜) of the predictor step:(a)compute a unit tangent vector πœ‰(π‘˜)βˆˆπ‘…π‘›+𝑝+π‘š+𝑠+1  of Ξ“πœ”0 at (πœ”(0),π‘‘π‘˜);(b)determine the direction 𝛾(π‘˜) of the predictor step.
If the sign of the determinant |||π·π»πœ”(0)(πœ”(π‘˜),π‘‘π‘˜)πœ‰π‘‡(π‘˜)|||   is (βˆ’1)𝑝+π‘š+𝑠+π‘π‘š+𝑝𝑠+π‘šπ‘ +1, take 𝛾(π‘˜)=πœ‰(π‘˜).
If the sign of the determinant |||π·π»πœ”(0)(πœ”(π‘˜),π‘‘π‘˜)πœ‰π‘‡(π‘˜)||| is (βˆ’1)𝑝+π‘š+𝑠+π‘π‘š+𝑝𝑠+π‘šπ‘ , take 𝛾(π‘˜)=βˆ’πœ‰(π‘˜).
Step 3. Compute a corrector point (πœ”(π‘˜+1),π‘‘π‘˜+1)βˆΆξ‚€ξ€·πœ”βˆ—ξ€Έ(π‘˜),ξ€·π‘‘βˆ—ξ€Έπ‘˜ξ‚=ξ€·πœ”(π‘˜),π‘‘π‘˜ξ€Έ+β„Žπ‘˜π›Ύ(π‘˜),ξ€·πœ”(π‘˜+1),π‘‘π‘˜+1ξ€Έ=ξ‚€ξ€·πœ”βˆ—ξ€Έ(π‘˜),ξ€·π‘‘βˆ—ξ€Έπ‘˜ξ‚βˆ’π·π»πœ”(0)ξ‚€ξ€·πœ”βˆ—ξ€Έ(π‘˜),ξ€·π‘‘βˆ—ξ€Έπ‘˜ξ‚+π»πœ”(0)ξ‚€ξ€·πœ”βˆ—ξ€Έ(π‘˜),ξ€·π‘‘βˆ—ξ€Έπ‘˜ξ‚,(4.1) where π·π»πœ”(0)(πœ”,𝑑)+=π·π»πœ”(0)(πœ”,𝑑)π‘‡ξ€·π·π»πœ”(0)(πœ”,𝑑)π·π»πœ”(0)(πœ”,𝑑)π‘‡ξ€Έβˆ’1(4.2) is the Moore-Penrose inverse of π·π»πœ”(0)(πœ”,𝑑).
If β€–π»πœ”(0)(πœ”(π‘˜+1),π‘‘π‘˜+1)β€–β‰€πœ€1, let β„Žπ‘˜+1=min{β„Ž0,2β„Žπ‘˜} and go to Step 4.
If β€–π»πœ”(0)(πœ”(π‘˜+1),π‘‘π‘˜+1)β€–βˆˆ(πœ€1,πœ€2), let β„Žπ‘˜+1=β„Žπ‘˜ and go to Step 4.
If β€–π»πœ”(0)(πœ”(π‘˜+1),π‘‘π‘˜+1)β€–β‰₯πœ€2, let β„Žπ‘˜+1=max{(1/2)β„Ž0,(1/2)β„Žπ‘˜} and go to Step 3.
Step 4. If πœ”(π‘˜+1)βˆˆΞ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘  and π‘‘π‘˜+1>πœ€3, let π‘˜=π‘˜+1 and go to Step 2.
If πœ”(π‘˜+1)βˆˆΞ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘  and π‘‘π‘˜+1<βˆ’πœ€3, let β„Žπ‘˜βˆΆ=β„Žπ‘˜(π‘‘π‘˜/(π‘‘π‘˜βˆ’π‘‘π‘˜+1)),  go to Step 3, and recompute (πœ”(π‘˜+1),π‘‘π‘˜+1)  for the initial point (𝑀(π‘˜),π‘‘π‘˜).
If πœ”(π‘˜+1)βˆ‰Ξ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘ , let β„Žπ‘˜βˆΆ=(β„Žπ‘˜/2)(π‘‘π‘˜/(π‘‘π‘˜βˆ’π‘‘π‘˜+1)),  go to Step 3, and recompute (πœ”(π‘˜+1),π‘‘π‘˜+1) for the initial point (πœ”(π‘˜),π‘‘π‘˜).
If πœ”(π‘˜+1)βˆˆΞ©Γ—π‘…+𝑝+π‘šΓ—π‘…π‘  and |tπ‘˜+1|β‰€πœ€3, then stop.

Remark 4.2. In Algorithm 4.1, the arc length parameter is not computed explicitly. The tangent vector at a point on Ξ“πœ”(0) has two opposite directions, one (the positive direction) makes 𝑠 increase and the other (the negative direction) makes 𝑠 decrease. The negative direction will lead us back to the initial point, so we must go along the positive direction. The criterion in Step 2 (b) of Algorithm 4.1 that determines the positive direction is based on a basic theory of homotopy method, that is, the positive direction 𝛾 at any point (πœ”,𝑑) on Ξ“πœ”(0) keeps the sign of the determinant |||π·π»πœ”(0)𝛾(πœ”,𝑑)𝑇||| invariant.

Example 4.3. We have π‘₯min𝑓=min21+π‘₯22,ξ€·π‘₯1ξ€Έ+32+π‘₯22,s.t.𝑔1ξ€·π‘₯(π‘₯)=1ξ€Έβˆ’32+π‘₯22π‘”βˆ’64≀0,2ξ€·π‘₯(π‘₯)=1ξ€Έβˆ’52+π‘₯22βˆ’9≀0,β„Ž(π‘₯)=π‘₯1βˆ’π‘₯22βˆ’3=0.(4.3) The results are shown in Table 1.

Example 4.4. We have π‘₯min𝑓=min21+π‘₯22+π‘₯23+π‘₯24+π‘₯25,3π‘₯1+2π‘₯2βˆ’13π‘₯3ξ€·π‘₯+0.014βˆ’π‘₯5ξ€Έ3,s.t.𝑔1(π‘₯)=π‘₯21+π‘₯22+π‘₯23+π‘₯24β„Žβˆ’10≀0,1(π‘₯)=4π‘₯1βˆ’2π‘₯2+0.8π‘₯3+0.6π‘₯4+0.5π‘₯25β„Ž=0,2(π‘₯)=π‘₯1+2π‘₯2βˆ’π‘₯3βˆ’0.5π‘₯4+π‘₯5βˆ’2=0.(4.4) The results are shown in Table 2.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 10771020) and the Jilin Province Natural Science Foundation (Grant no. 20101597).