Abstract

We discuss the following problem: when 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔𝑃𝑄𝑃𝑄 of idempotent matrices 𝑃 and 𝑄, where 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑔 and 𝑎0,𝑏0, is group involutory.

1. Introduction

Throughout this paper 𝑛×𝑛 stands for the set of 𝑛×𝑛 complex matrices. Let 𝐴𝑛×𝑛. 𝐴 is said to be idempotent if 𝐴2=𝐴. 𝐴 is said to be group invertible if there exists an 𝑋𝑛×𝑛 such that𝐴𝑋𝐴=𝐴,𝑋𝐴𝑋=𝑋,𝐴𝑋=𝑋𝐴(1.1) hold. If such an 𝑋 exists, then it is unique, denoted by 𝐴𝑔, and called the group inverse of 𝐴. It is well known that the group inverse of a square matrix 𝐴 exists if and only if rank(𝐴2)=rank(𝐴) (see, e.g., [1] for details). Clearly, not every matrix is group invertible. But the group inverse of every idempotent matrix exists and is this matrix itself.

Recall that a matrix 𝐴 with the group inverse is said to be group involutory if 𝐴𝑔=𝐴. 𝐴 is the group involutory matrix if and only if it is tripotent, that is, satisfies 𝐴3=𝐴 (see [2]). Thus, for a nonzero idempotent matrix 𝑃 and a nonzero scalar 𝑎, 𝑎𝑃 is a group involutory matrix if and only if either 𝑎=1 or 𝑎=1.

Recently, some properties of linear combinations of idempotents or projections are widely discussed (see, e.g., [312] and the literature mentioned below). In [13], authors established a complete solution to the problem of when a linear combination of two different projectors is also a projector. In [14], authors considered the following problem: when a linear combination of nonzero different idempotent matrices is the group involutory matrix. In [15], authors provided the complete list of situations in which a linear combination of two idempotent matrices is the group involutory matrix. In [16], authors discussed the group inverse of 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔𝑃𝑄𝑃𝑄 of idempotent matrices 𝑃 and 𝑄, where 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑔 with 𝑎,𝑏0, deduced its explicit expressions, and some necessary and sufficient conditions for the existence of the group inverse of 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄.

In this paper, we will investigate the following problem: when 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔𝑃𝑄𝑃𝑄 is group involutory. To this end, we need the results below.

Lemma 1.1 (see [16, Theorems 2.1 and  2.4]). Let 𝑃,𝑄𝑛×𝑛 be two different nonzero idempotent matrices. Suppose (𝑃𝑄)2=(𝑄𝑃)2. Then for any scalars 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑔, where 𝑎,𝑏0 and 𝜃=𝑎+𝑏+𝑐+𝑑+𝑒+𝑓+𝑔, 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔(𝑃𝑄)2 is group invertible, and
(i) if 𝜃0, then 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔(𝑃𝑄)2𝑔=1𝑎1𝑃+𝑏1𝑄𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄𝑎+1𝑏+𝑑+2𝑎𝑏𝑄𝑃𝑎+1𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏1𝑃𝑄𝑃+𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏22𝑄𝑃𝑄𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑎𝑏21𝜃𝑃𝑄𝑃𝑄;(1.2)
(ii) if 𝜃=0, then 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔(𝑃𝑄)2𝑔=1𝑎1𝑃+𝑏1𝑄𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄𝑎+1𝑏+𝑑+2𝑎𝑏𝑄𝑃𝑎+1𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏1𝑃𝑄𝑃+𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏22𝑄𝑃𝑄𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑎𝑏2(𝑃𝑄)2.(1.3)

Lemma 1.2 (see [16, Theorem  3.1]). Let 𝑃,𝑄𝑛×𝑛 be two different nonzero idempotent matrices. Suppose (𝑄𝑃)2=0. Then for any scalars 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓, and 𝑔, where 𝑎,𝑏0, 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔(𝑃𝑄)2 is group invertible, and 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔(𝑃𝑄)2𝑔=1𝑎1𝑃+𝑏1𝑄𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄𝑎+1𝑏+𝑑+2𝑎𝑏𝑄𝑃𝑎+1𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏1𝑃Q𝑃+𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏22𝑄𝑃𝑄𝑎+2𝑏+2𝑐+𝑑+𝑔+𝑎𝑏𝑐𝑑𝑏𝑒𝑐𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑐𝑓𝑎𝑏2+𝑐2𝑑𝑎2𝑏2(𝑃𝑄)2.(1.4)

2. Main Results

In this section, we will research when some combination of two nonzero idempotent matrices is a group involutory matrix.

First, we will discuss some situations lying in the category of (𝑃𝑄)2=(𝑄𝑃)2.

Theorem 2.1. Let 𝑃,𝑄𝑛×𝑛 be two different nonzero idempotent matrices with (𝑃𝑄)2=(𝑄𝑃)2, and let 𝐴 be a combination of the form 𝐴=𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔𝑃𝑄𝑃𝑄,(2.1) where 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑔 with 𝑎,𝑏0. Denote 𝜃=𝑎+𝑏+𝑐+𝑑+𝑒+𝑓+𝑔. Then the following list comprises characteristics of all cases where 𝐴 is the group involutory matrix:
(a) the cases denoted by (𝑎1)(𝑎3), in which 𝑃𝑄=𝑄𝑃,(2.2) and any of the following sets of additional conditions hold:(a1)either 𝑎=1 or 𝑎=1, either 𝜃=1 or 𝜃=1 or 𝜃=0, and 𝑄=𝑃𝑄;(a2)either 𝑏=1 or 𝑏=1, either 𝜃=1 or 𝜃=1 or 𝜃=0, and 𝑃=𝑃𝑄;(a3)either 𝑎=1 or 𝑎=1, either 𝑏=1 or 𝑏=1, either 𝜃=1 or 𝜃=1 or 𝜃=0 or 𝑃𝑄=0.
(b) the cases denoted by (𝑏1)(𝑏6), in which 𝑃𝑄𝑄𝑃,𝑃𝑄𝑃=𝑄𝑃𝑄,(2.3) and any of the following sets of additional conditions hold:(b1)𝑎=±1,𝑏=1, either 𝜃=1 or 𝜃=1 or 𝜃=0 or 𝑃𝑄𝑃=0; (b2)𝑎=𝑏=±1,𝑐=𝑑=1, either 𝜃=1 or 𝜃=1 or 𝜃=0 or 𝑃𝑄𝑃=0;(b3)𝑎=𝑏=±1,𝑐=1, either 𝜃=1 or 𝜃=1 or 𝜃=0, and 𝑄𝑃=𝑃𝑄𝑃;(b4)𝑎=𝑏=±1,𝑑=1, either 𝜃=1 or 𝜃=1 or 𝜃=0, and 𝑃𝑄=𝑃𝑄𝑃;(b5)𝑎=𝑏=±1, 𝑐=1, and 𝑄𝑃=0;(b6)𝑎=𝑏=±1, 𝑑=1, and 𝑃𝑄=0,
(c) the cases denoted by (𝑐1)(𝑐18), in which 𝑃𝑄𝑃𝑄𝑃𝑄,𝑃𝑄𝑃𝑄=𝑄𝑃𝑄𝑃,(2.4) and any of the following sets of additional conditions hold:(c1)𝑎=±1,𝑏=1,𝑐+𝑑+2𝑒±𝑐𝑑=±1, either 𝜃=1 or 𝜃=1, and 𝑄𝑃𝑄=𝑃𝑄𝑃𝑄; (c2)𝑎=𝑏=𝑒=±1,𝑐=𝑑=1, either 𝜃=1 or 𝜃=1, and 𝑄𝑃𝑄=𝑃𝑄𝑃𝑄;(c3)𝑎=±1,𝑏=1,𝑐+𝑑+2𝑓𝑐𝑑=1, either 𝜃=1 or 𝜃=1, and 𝑃𝑄𝑃=𝑃𝑄𝑃𝑄;(c4)𝑎=𝑏=𝑓=±1,𝑐=𝑑=1, either 𝜃=1 or 𝜃=1, and 𝑃𝑄𝑃=𝑃𝑄𝑃𝑄;(c5)𝑎=±1,𝑏=1,𝑐+𝑑+2𝑒±𝑐𝑑=±1,𝑐+𝑑+2𝑓𝑐𝑑=1, either 𝑔=1 or 𝑔=1;(c6)𝑎=𝑏=𝑒=𝑓=±1,𝑐=𝑑=1, either 𝑔=1 or 𝑔=3;(c7)𝑎=±1,𝑏=1,𝑐+𝑑+2𝑒±𝑐𝑑=±1, and 𝑄𝑃𝑄=0;(c8)𝑎=𝑏=𝑒=±1,𝑐=𝑑=1, and 𝑄𝑃𝑄=0;(c9)𝑎=±1,𝑏=1,𝑐+𝑑+2𝑓𝑐𝑑=1, and 𝑃𝑄𝑃=0;(c10)𝑎=𝑏=𝑓=±1,𝑐=𝑑=1, and 𝑃𝑄𝑃=0;(c11)𝑎=±1,𝑏=1,𝑐+𝑑+2𝑒±𝑐𝑑=±1,𝑐+𝑑+2𝑓𝑐𝑑=1, and 𝑃𝑄𝑃𝑄=0;(c12)𝑎=𝑏=𝑒=𝑓=±1,𝑐=𝑑=1, and 𝑃𝑄𝑃𝑄=0;(c13)𝑎=±1,𝑏=1,2𝑒+𝑐+𝑑±𝑐𝑑=±1,𝜃=0, and 𝑄𝑃𝑄=𝑃𝑄𝑃𝑄;(c14)𝑎=𝑏=𝑒=±1,𝑐=𝑑=1,𝜃=0, and 𝑄𝑃𝑄=𝑃𝑄𝑃𝑄;(c15)𝑎=±1,𝑏=1,2𝑓+𝑐+𝑑𝑐𝑑=1,𝜃=0, and 𝑃𝑄𝑃=𝑃𝑄𝑃𝑄;(c16)𝑎=𝑏=𝑓=±1,𝑐=𝑑=1,𝜃=0, and 𝑃𝑄𝑃=𝑃𝑄𝑃𝑄;(c17)𝑎=±1,𝑏=1,2𝑒+𝑐+𝑑±𝑐𝑑=±1,2𝑓+𝑐+𝑑𝑐𝑑=1,𝑔=0;(c18)𝑎=𝑏=𝑒=𝑓=±1,𝑐=𝑑=1,𝑔=2.

Proof. Obviously, the condition (2.2) implies that the group inverse of 𝐴 exists and is of the form (1.2) when 𝜃0 or the form (1.3) when 𝜃=0 by Lemma 1.1. So do the conditions (2.2), (2.3), and (2.4). We will straightforwardly show that a matrix 𝐴 of the form (2.1) is the group involutory matrix if and only if 𝐴𝐴𝑔=0.
(a)  Under the condition (2.2), 𝐴=𝑎𝑃+𝑏𝑄+𝜇𝑃𝑄, where 𝜇=𝑐+𝑑+𝑒+𝑓+𝑔.
(1) If 𝜃0, then 𝐴𝑔=1𝑎1𝑃+𝑏1𝑄+𝜃1𝑎1𝑏𝑃𝑄,(2.5) and so 𝐴𝐴𝑔=1𝑎𝑎1𝑃+𝑏𝑏1𝑄+𝜇𝜃+1𝑎+1𝑏𝑃𝑄=0.(2.6) Multiplying (2.6) by 𝑃 and 𝑄, respectively, leads to 1𝑎𝑎1𝑃+𝑏𝑏1𝑃𝑄+𝜇𝜃+1𝑎+1𝑏1𝑃𝑄=0,𝑎𝑎1𝑃𝑄+𝑏𝑏1𝑄+𝜇𝜃+1𝑎+1𝑏𝑃𝑄=0,(2.7) and then 1𝑎𝑎1𝑃+𝑏𝑏1𝑃𝑄=𝑎𝑎1𝑃𝑄+𝑏𝑏𝑄.(2.8) Multiplying the above equation, respectively, by 𝑃 and by 𝑄, we get 1𝑎𝑎1(𝑃𝑃𝑄)=0,𝑏𝑏(𝑄𝑃𝑄)=0.(2.9) Thus, since 𝑃𝑄, we have three situations: 𝑃=𝑃𝑄 and 𝑏=𝑏1; 𝑎=𝑎1 and 𝑄=𝑃𝑄; 𝑎=𝑎1 and 𝑏=𝑏1.
When 𝑄=𝑃𝑄 and 𝑎=𝑎1, (2.6) becomes (𝜃𝜃1)𝑄=0 and then 𝜃=±1. Therefore, we obtain (𝑎1) except the situation 𝜃=0. Similarly, when 𝑏=𝑏1 and 𝑃=𝑃𝑄, we have (𝑎2) except the situation 𝜃=0. When 𝑎=𝑎1 and 𝑏=𝑏1, (2.6) becomes (𝜃𝜃1)𝑃𝑄=0 and then 𝜃=±1 or 𝑃𝑄=0. Therefore, we obtain (𝑎3) except the situation 𝜃=0.
(2) If 𝜃=0, then 𝐴𝑔=1𝑎1𝑃+𝑏1𝑄𝑎+1𝑏𝑃𝑄,(2.10) and then 𝐴𝐴𝑔=1𝑎𝑎1𝑃+𝑏𝑏1𝑄+𝜇+𝑎+1𝑏𝑃𝑄=0.(2.11) Analogous to the process of reaching (2.9) in (a)(1), we have 1𝑏𝑏1(𝑄𝑃𝑄)=0,𝑎𝑎(𝑃𝑃𝑄)=0.(2.12) Thus, we have three situations: 𝑃=𝑃𝑄 and 𝑏=𝑏1; 𝑎=𝑎1 and 𝑄=𝑃𝑄; 𝑎=𝑎1 and 𝑏=𝑏1, since 𝑃𝑄. Similar to the argument in (𝑎)(1), substituting them, respectively, into (2.11), we can obtain the situation 𝜃=0, respectively, in (𝑎1),(𝑎2), and (𝑎3).
(b) Under the condition (2.3), 𝐴=𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝜈𝑃𝑄𝑃, where 𝜈=𝑒+𝑓+𝑔.
(1) If 𝜃0, then 𝐴𝑔=1𝑎1𝑃+𝑏1𝑄𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄𝑎+1𝑏+𝑑+1𝑎𝑏𝑄𝑃𝑎+1𝑏+𝑐+𝑑+1𝑎𝑏𝜃𝑃𝑄𝑃,(2.13) and so 𝐴𝐴𝑔=1𝑎𝑎1𝑃+𝑏𝑏1𝑄+𝑐+𝑎+1𝑏+𝑐+1𝑎𝑏𝑃𝑄𝑑+𝑎+1𝑏+𝑑1𝑎𝑏𝑄𝑃+𝜈𝑎1𝑏𝑐+𝑑1𝑎𝑏𝜃𝑃𝑄𝑃=0.(2.14) Multiplying the above equation, respectively, on the two sides by 𝑃 yields 10=𝑎𝑎1𝑃+𝑐+𝑏+𝑎+𝑐𝑐𝑎𝑏𝑃𝑄+𝜈+𝑑1𝑎𝑏𝜃1𝑃𝑄𝑃,(2.15)0=𝑎𝑎1𝑃+𝑏+𝑑+𝑎+𝑑𝑑𝑎𝑏𝑄𝑃+𝜈+𝑐1𝑎𝑏𝜃𝑃𝑄𝑃.(2.16) Multiplying (2.15) on the left sides by 𝑄 and (2.16) on the right sides by 𝑄, by (2.3), we have 1𝑎𝑎1𝑄𝑃+𝑏+𝑐+𝑑+𝜈+𝑎1𝜃1𝑄𝑃𝑄=0,𝑎𝑎1𝑃𝑄+𝑏+𝑐+𝑑+𝜈+𝑎1𝜃𝑄𝑃𝑄=0,(2.17) and then (𝑎𝑎1)(𝑄𝑃𝑃𝑄)=0. Since 𝑄𝑃𝑃𝑄, 𝑎=𝑎1. Similarly, 𝑏=𝑏1.
Substituting 𝑎=𝑎1 inside (2.17) yields (𝜃𝜃1)𝑄𝑃𝑄=0 and then 𝜃=𝜃1 or 𝑄𝑃𝑄=0. We will discuss the remainder for detail as follows:
When 𝑎=𝑎1, 𝑏=𝑏1, (2.14) becomes10=𝑐+𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄+𝑑+𝑎+1𝑏+𝑑+1𝑎𝑏𝑄𝑃𝜈𝑎1𝑏𝑐+𝑑1𝑎𝑏𝜃𝑃𝑄𝑃,(2.18)
(i) if 𝑎+𝑏=0, then 1𝑐+𝑎+1𝑏+𝑐1𝑎𝑏=0,𝑑+𝑎+1𝑏+𝑑𝑎𝑏=0,(2.19) and so it follows from (2.18) that 1𝜃𝜃1𝑃𝑄𝑃=𝜈+𝑐+𝑑𝜃𝑃𝑄𝑃=0.(2.20) Therefore, either 𝜃=𝜃1 or 𝑃𝑄𝑃=0 implies that (2.18) holds, namely, (2.14) holds. Thus, we have (𝑏1) except the situation 𝜃=0.
(ii) if 𝑎=𝑏, then (2.18) becomes 10=(2𝑐+2𝑎)𝑃𝑄+(2𝑑+2𝑎)𝑄𝑃+2𝜈𝜃𝜃𝑃𝑄𝑃.(2.21) Multiplying the above equation, respectively, on the right side by 𝑃 and on the left side by 𝑄, we have 10=(2𝑐+2𝑎)𝑃𝑄+𝜈+𝑑𝑐𝜃1𝑃𝑄𝑃,(2.22)0=(2𝑑+2𝑎)𝑄𝑃+𝜈+𝑐𝑑𝜃𝑃𝑄𝑃.(2.23) So if 𝜃=𝜃1, then the two equations above (2.22) and (2.23) become, respectively, (𝑐+𝑎)(𝑃𝑄𝑃𝑄𝑃)=0,(𝑑+𝑎)(𝑄𝑃𝑃𝑄𝑃)=0.(2.24) Or if 𝑃𝑄𝑃=0, then (2.22) and (2.23) become, respectively, (𝑐+𝑎)𝑃𝑄=0,(𝑑+𝑎)𝑄𝑃=0.(2.25) Since 𝑃𝑄𝑄𝑃, it follows from (2.24) and (2.25) that we have the six situations: 𝜃=𝜃1 and 𝑐=𝑑=𝑎; 𝜃=𝜃1, 𝑐=𝑎 and 𝑄𝑃=𝑃𝑄𝑃; 𝜃=𝜃1, 𝑑=𝑎, and 𝑃𝑄=𝑃𝑄𝑃; 𝑐=𝑎 and 𝑄𝑃=0; 𝑑=𝑎 and 𝑃𝑄=0; 𝑐=𝑑=𝑎 and 𝑃𝑄𝑃=0. Thus, we have (𝑏2)(𝑏4) except the situation 𝜃=0, and (𝑏5) and (𝑏6).
(2) If 𝜃=0, then 𝐴𝑔=1𝑎1𝑃+𝑏1𝑄𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄𝑎+1𝑏+𝑑1𝑎𝑏𝑄𝑃+𝑎+1𝑏+𝑐+𝑑𝑎𝑏𝑃𝑄𝑃,(2.26) and then 𝐴𝐴𝑔=1𝑎𝑎1𝑃+𝑏𝑏1𝑄+𝑐+𝑎+1𝑏+𝑐+1𝑎𝑏𝑃𝑄𝑑+𝑎+1𝑏+𝑑1𝑎𝑏𝑄𝑃+𝜈𝑎1𝑏𝑐+𝑑𝑎𝑏𝑃𝑄𝑃=0.(2.27) Analogous to the process in (b)(1), using (2.27) we can obtain 1𝑎𝑎1𝑄𝑃𝑎𝑎1𝑃𝑄𝑃=0,𝑎𝑎1𝑃𝑄𝑎𝑎𝑃𝑄𝑃=0.(2.28) Thus, since 𝑃𝑄𝑄𝑃, 𝑃𝑄𝑃𝑄𝑃 and/or 𝑄𝑃𝑃𝑄𝑃 and then 𝑎=𝑎1. Similarly, 𝑏=𝑏1. Hence, 𝑎=±𝑏.
(i)  If 𝑎=𝑏, then 1𝑐+𝑎+1𝑏+𝑐1𝑎𝑏=0,𝑑+𝑎+1𝑏+𝑑1𝑎𝑏=0,𝜈𝑎1𝑏𝑐+𝑑𝑎𝑏=2(𝑎+𝑏)=0.(2.29) Thus, (2.27) holds. Hence we have the situation 𝜃=0 in (𝑏1).
(ii) If 𝑎=𝑏, then (2.27) becomes (𝑐+𝑎)𝑃𝑄+(𝑑+𝑎)𝑄𝑃+𝜈𝑃𝑄𝑃=0.(2.30) Multiplying the above equation on the left side, respectively, by 𝑃 and by 𝑄, we have (𝑐+𝑎)(𝑃𝑄𝑃𝑄𝑃)=0,(𝑑+𝑎)(𝑄𝑃𝑃𝑄𝑃)=0.(2.31) Thus, 𝑐=𝑑=𝑎; 𝑐=𝑎 and 𝑄𝑃=𝑃𝑄𝑃; 𝑑=𝑎 and 𝑃𝑄=𝑃𝑄𝑃. Hence, we have the situation 𝜃=0, respectively, in (𝑏2),(𝑏3), and (𝑏4).
(c) Under the condition (2.4), 𝐴=𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄𝑃+𝑔𝑃𝑄𝑃𝑄.(2.32)
(1)  If 𝜃0, then 𝐴𝑔=1𝑎1𝑃+𝑏1𝑄𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄𝑎+1𝑏+𝑑+2𝑎𝑏𝑄𝑃𝑎+1𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏1𝑃𝑄𝑃+𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐d𝑎𝑓𝑎𝑏22𝑄𝑃𝑄𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑎𝑏21𝜃𝑃𝑄𝑃𝑄,(2.33) and so 𝐴𝐴𝑔=1𝑎𝑎1𝑃+𝑏𝑏1𝑄+𝑐+𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄+𝑑+𝑎+1𝑏+𝑑+2𝑎𝑏𝑄𝑃𝑒𝑎1𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+1𝑃𝑄𝑃𝑓𝑎2𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏2+2𝑄𝑃𝑄𝑔+𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑎𝑏21𝜃𝑃𝑄𝑃𝑄=0.(2.34) If 𝑃𝑄=0, then 𝑄𝑃𝑄=0=𝑃𝑄𝑃 and so it contradicts (2.4). Thus 𝑃𝑄0. Similarly, 𝑄𝑃0.
Multiplying (2.34) on the left side by 𝑄𝑃 yields 1𝑎𝑎1𝑄𝑃+𝑏+𝑐+𝑎+𝑐𝑐𝑎𝑏𝑄𝑃𝑄+𝑑+𝑒+𝑓+𝑔1𝑎𝑏𝜃𝑃𝑄𝑃𝑄=0.(2.35) Multiplying the above equation, respectively, on the left side by 𝑃 and on the right side by 𝑃𝑄 yields, by (2.4), 10=𝑎𝑎1𝑃𝑄𝑃+𝑎1𝑎+𝜃𝜃1𝑃𝑄𝑃𝑄,(2.36)0=𝑎𝑎1𝑄𝑃𝑄+𝑎1𝑎+𝜃𝜃𝑃𝑄𝑃𝑄.(2.37) Since 𝑃𝑄𝑃𝑄𝑃𝑄, 𝑎=𝑎1 by (2.36) and (2.37). Similarly, we can gain 𝑏=𝑏1. Substituting 𝑎=𝑎1 inside (2.36) yields 𝜃=𝜃1 or 𝑃𝑄𝑃𝑄=0.
(i)  Consider the case of 𝑎=𝑎1, 𝑏=𝑏1 and 𝜃=𝜃1.
Substituting 𝑎=𝑎1, 𝑏=𝑏1, and 𝜃=𝜃1 inside (2.35) yields 𝑐𝑎+𝑏+𝑐+𝑎𝑏(𝑄𝑃𝑄𝑃𝑄𝑃𝑄)=0.(2.38) Similarly, we have 𝑑𝑎+𝑏+𝑑+𝑎𝑏(𝑃𝑄𝑃𝑃𝑄𝑃𝑄)=0.(2.39)
If 𝑃𝑄𝑃=𝑃𝑄𝑃𝑄, then 𝑄𝑃𝑄𝑃𝑄𝑃𝑄 by the hypothesis 𝑃𝑄𝑃𝑄𝑃𝑄 and so 𝑎+𝑏+𝑐+𝑐/𝑎𝑏=0 by (2.38). Multiplying (2.34) on the right side by 𝑄 yields 𝑎+𝑐+𝑑+2𝑓𝑐𝑑𝑎(𝑄𝑃𝑄𝑃𝑄𝑃𝑄)=0.(2.40) Thus, 𝑎+𝑐+𝑑+2𝑓𝑐𝑑/𝑎=0 and then (2.14) becomes 𝑑𝑎+𝑏+𝑑+𝑎𝑏𝑄𝑃+𝑓𝑎2𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑎𝑓𝑎+𝑄𝑃𝑄𝑏+𝑒+𝑔+𝑐𝑑𝑎𝑓𝑎𝜃𝑃𝑄𝑃=0.(2.41) Multiplying the above equation on the right side by 𝑃 yields 𝑑𝑎+𝑏+𝑑+𝑎𝑏(𝑄𝑃𝑃𝑄𝑃)=0.(2.42) Assume 𝑃𝑄=𝑃𝑄𝑃. Then 𝑄𝑃𝑄=𝑄𝑃𝑄𝑃=𝑃𝑄𝑃𝑄=𝑃𝑄=𝑃𝑄𝑃 and it contradicts the hypothesis 𝑃𝑄𝑃𝑄𝑃𝑄. Thus, 𝑎+𝑏+𝑑+𝑑/𝑎𝑏=0.
Similarly, if 𝑄𝑃𝑄=𝑃𝑄𝑃𝑄, then we can obtain 𝑑𝑎+𝑏+𝑑+𝑎𝑏=0, 𝑏+𝑐+𝑑+2𝑒𝑐𝑑/𝑏=0, and 𝑎+𝑏+𝑐+𝑐/𝑎𝑏=0.
Obviously, if 𝑄𝑃𝑄𝑄𝑃𝑄𝑃 and 𝑄𝑃𝑄𝑃𝑄𝑃𝑄, we have 𝑎+𝑏+𝑑+𝑑/𝑎𝑏=0, 𝑎+𝑏+𝑐+𝑐/𝑎𝑏=0, 𝑏+𝑐+𝑑+2𝑒𝑐𝑑/𝑏=0, and 𝑎+𝑐+𝑑+2𝑓𝑐𝑑/𝑎=0.
Next, we calculate these scalars. If 𝑎+𝑏=0, then 𝑎+𝑏+𝑐+𝑐/𝑎𝑏=0 for any 𝑐 and 𝑎+𝑏+𝑑+𝑑/𝑎𝑏=0 for any 𝑑, and so 𝑐,𝑑,𝑒 are chosen to satisfy 𝑏+𝑐+𝑑+2𝑒𝑐𝑑/𝑏=0. Similarly 𝑐,𝑑,𝑓 are chosen to satisfy 𝑎+𝑐+𝑑+2𝑓𝑐𝑑/𝑎=0.
If 𝑎=𝑏, then 𝑐=𝑑=𝑎, and 𝑒=𝑎 by solving 𝑏+𝑐+𝑑+2𝑒𝑐𝑑/𝑏=0, and 𝑓=𝑎 by solving 𝑎+𝑐+𝑑+2𝑓𝑐𝑑/𝑎=0.
Note that 𝑏+𝑐+𝑑+2𝑒𝑐𝑑/𝑏=0 and 𝑎+𝑐+𝑑+2𝑓𝑐𝑑/𝑎=0 imply 𝑔=𝜃(𝑎+𝑏). Hence, we have (𝑐1)(𝑐6).
(ii) Consider the case of 𝑎=𝑎1, 𝑏=𝑏1, and 𝑃𝑄𝑃𝑄=0.
Multiplying (2.34), respectively, on the right side by 𝑄𝑃 and on the left side by 𝑃𝑄 yields1𝑐+𝑎+1𝑏+𝑐1𝑎𝑏𝑄𝑃𝑄=0,𝑑+𝑎+1𝑏+𝑑𝑎𝑏𝑃𝑄𝑃=0.(2.43)
If 𝑄𝑃𝑄=0, then 𝑃𝑄𝑃0 and so a+𝑏+𝑑+𝑑/𝑎𝑏=0 and (2.34) becomes 10=𝑐+𝑎+1𝑏+𝑐2𝑎𝑏𝑃𝑄+𝑒𝑎1𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏𝑃𝑄𝑃.(2.44) Multiplying (2.44) on right side by 𝑄 yields 1𝑐+𝑎+1𝑏+𝑐𝑎𝑏𝑃𝑄=0.(2.45) Since 𝑃𝑄0, 𝑎+𝑏+𝑐+𝑐/𝑎𝑏=0 and then (2.44) becomes 2𝑒+𝑏+𝑐+𝑑𝑐𝑑𝑏𝑃𝑄𝑃.(2.46) Thus, 2𝑒+𝑏+𝑐+𝑑𝑐𝑑/𝑏=0.
If 𝑃𝑄𝑃=0, then we, similarly, have 𝑎+𝑏+𝑐+𝑐/𝑎𝑏=0, 𝑎+𝑏+𝑑+𝑑/𝑎𝑏=0, and 2𝑓+𝑎+𝑐+𝑑𝑐𝑑/𝑎=0.
If 𝑃𝑄𝑃0 and 𝑄𝑃𝑄0, then, multiplying (2.34), on the right side by 𝑄 and on the left side by 𝑃 yields 𝑎+𝑏+𝑐+𝑐/𝑎𝑏=0, and multiplying (2.34) on the right side by 𝑃 and on the left side by 𝑄 yields 𝑎+𝑏+𝑑+𝑑/𝑎𝑏=0. Thus, (2.34) becomes 2𝑒𝑎1𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏1𝑃𝑄𝑃+𝑓𝑎2𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏2𝑄𝑃𝑄=0.(2.47) Multiplying the equation above on the right side, respectively, by 𝑃 and by 𝑄 yields 2𝑒+𝑏+𝑐+𝑑𝑐𝑑𝑏=0,2𝑓+𝑎+𝑐+𝑑𝑐𝑑𝑎=0.(2.48) As the argument above in (i), we have (𝑐7)(𝑐12).
(2) If 𝜃=0, then 𝐴𝑔=1𝑎1𝑃+𝑏1𝑄𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄𝑎+1𝑏+𝑑+2𝑎𝑏𝑄𝑃𝑎+1𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏1𝑃𝑄𝑃+𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏22𝑄𝑃𝑄𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑎𝑏2𝑃𝑄𝑃𝑄,(2.49) and so 𝐴𝐴𝑔=1𝑎𝑎1𝑃+𝑏𝑏1𝑄+𝑐+𝑎+1𝑏+𝑐+1𝑎𝑏𝑃𝑄𝑑+𝑎+1𝑏+𝑑2𝑎𝑏𝑄𝑃+𝑒𝑎1𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+1𝑃𝑄𝑃𝑓𝑎2𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏2+2𝑄𝑃𝑄𝑔+𝑎+2𝑏+𝑐+𝑑+𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑎𝑏2𝑃𝑄𝑃𝑄=0.(2.50) Analogous to the process in (c)(1), using (2.50), we can get 1𝑎𝑎1(𝑃𝑄𝑃𝑃𝑄𝑃𝑄)=0,𝑎𝑎(𝑄𝑃𝑄𝑃𝑄𝑃𝑄)=0.(2.51)
Thus, since 𝑃𝑄𝑃𝑄𝑃𝑄, 𝑃𝑄𝑃𝑃𝑄𝑃𝑄 and/or 𝑄𝑃𝑄𝑃𝑄𝑃𝑄 and then 𝑎=𝑎1. Similarly, 𝑏=𝑏1. Therefore, multiplying (2.50) on the right side by 𝑄 and on the left side by 𝑃 yields 𝑐𝑎+𝑏+𝑐+𝑎𝑏(𝑃𝑄𝑃𝑄𝑃𝑄)=0.(2.52) Multiplying (2.50) on the right side by 𝑃 and on the left side by 𝑄 yields 𝑑𝑎+𝑏+𝑑+𝑎𝑏(𝑄𝑃𝑃𝑄𝑃𝑄)=0.(2.53) Since 𝑃𝑄𝑃𝑄𝑃𝑄 and 𝑄𝑃𝑃𝑄𝑃𝑄, 𝑎+𝑏+𝑐+𝑐/𝑎𝑏=0 and 𝑎+𝑏+𝑑+𝑑/𝑎𝑏=0. Multiplying (2.50) on the left side, respectively, by 𝑃 and by 𝑄 yields 2𝑒+𝑏+𝑐+𝑑𝑐𝑑𝑏(𝑃𝑄𝑃𝑃𝑄𝑃𝑄)=0,2𝑓+𝑎+𝑐+𝑑𝑐𝑑𝑎(𝑄𝑃𝑄𝑃𝑄𝑃𝑄)=0.(2.54) Thus, we have 2𝑒+𝑏+𝑐+𝑑𝑐𝑑/𝑏=0 and 𝑄𝑃𝑄=𝑃𝑄𝑃𝑄; 2𝑓+𝑎+𝑐+𝑑𝑐𝑑/𝑎=0 and 𝑃𝑄𝑃=𝑃𝑄𝑃𝑄; 2𝑒+𝑏+𝑐+𝑑𝑐𝑑/𝑏=0 and 2𝑓+𝑎+𝑐+𝑑𝑐𝑑/𝑎=0.
Note that 2𝑒+𝑏+𝑐+𝑑𝑐𝑑/𝑏=0 and 2𝑓+𝑎+𝑐+𝑑𝑐𝑑/𝑎=0 imply 𝑔=(𝑎+𝑏) by 𝜃=0. As the argument above in (c)(1), we have (𝑐13)(𝑐18).

Remark 2.2. Clearly, [15, (a) and (b) in Theorem] are the special cases in Theorem 2.1.

Example 2.3. Let 𝑃=1000000000010000000000100000000001000000000010000000000000000000000000000000000000000000000000000000,𝑄=0100010000000000000000000001000000000000000010000001000100000000000000000000010000100001100000000000.(2.55) Then they, obviously, are idempotent, and (𝑃𝑄)2=(𝑄𝑃)2 but 𝑃𝑄𝑃𝑄𝑃𝑄. By Theorem 2.1(𝑐5), 7𝐴=𝑃𝑄+2𝑃𝑄+2𝑄𝑃21𝑃𝑄𝑃2𝑄𝑃𝑄+𝑃𝑄𝑃𝑄(2.56) is the group involutory matrix, namely, 𝐴=𝐴𝑔, since 2+2+2(7/2)+22=1 and 2+2+2(1/2)22=1. By Theorem 2.1(𝑐17), 𝑃𝑄+𝑃𝑄2𝑄𝑃+2𝑃𝑄𝑃𝑄𝑃𝑄(2.57) is group involutory since 12+22+1(2)=1 and 12+2(1)1(2)=1.

Next, we will study the situation (𝑃𝑄)2=0 or (𝑄𝑃)2=0.

Theorem 2.4. Let 𝑃,𝑄𝑛×𝑛 be two different nonzero idempotent matrices, and let 𝐴 be a combination of the form 𝐴=𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑔𝑃𝑄𝑃𝑄,(2.58) where 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑔 with 𝑎,𝑏0. Suppose that 𝑃𝑄𝑃𝑄0,𝑄𝑃𝑄𝑃=0,(2.59) and any of the following sets of additional conditions hold:

(𝑑1)𝑎=𝑏=±1, c=𝑑=1, 𝑒=𝑓=±1,𝑔=1;

(𝑑2)𝑎=±1, 𝑏=1, 2𝑒+𝑐+𝑑±𝑐𝑑=±1, 2𝑓+𝑐+𝑑𝑐𝑑=1.

Then 𝐴 is the group involutory matrix.

Proof. By Lemma 1.2, 0=𝐴𝐴𝑔=1𝑎𝑎1𝑃+𝑏𝑏1𝑄+𝑐+𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄+𝑑+𝑎+1𝑏+𝑑+2𝑎𝑏𝑄𝑃𝑒𝑎1𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+1𝑃𝑄𝑃𝑓𝑎2𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏2+2𝑄𝑃𝑄𝑔+𝑎+2𝑏+2𝑐+𝑑+𝑔+𝑎𝑏𝑐𝑑𝑏𝑒𝑐𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑐𝑓𝑎𝑏2+𝑐2𝑑𝑎2𝑏2(𝑃𝑄)2.(2.60) Since 𝑃𝑄𝑃𝑄0, multiplying (2.60), respectively, on the right side and on the right side by 𝑃𝑄𝑃𝑄 yields 1𝑎𝑎1𝑃𝑄𝑃𝑄=0,𝑏𝑏𝑃𝑄𝑃𝑄=0,(2.61) and so 𝑎=𝑎1 and 𝑏=𝑏1. Substituting them inside (2.60), we get 10=𝑐+𝑎+1𝑏+𝑐1𝑎𝑏𝑃𝑄+𝑑+𝑎+1𝑏+𝑑+2𝑎𝑏𝑄𝑃𝑒𝑎1𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+1𝑃𝑄𝑃𝑓𝑎2𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏2+2𝑄𝑃𝑄𝑔+𝑎+2𝑏+2𝑐+𝑑+𝑔+𝑎𝑏𝑐𝑑𝑏𝑒𝑐𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑐𝑓𝑎𝑏2+𝑐2𝑑𝑎2𝑏2𝑃𝑄𝑃𝑄.(2.62) Multiplying (2.62) on the left side by 𝑃𝑄𝑃 yields 1𝑐+𝑎+1𝑏+𝑐𝑎𝑏𝑃𝑄𝑃𝑄=0,(2.63) and then 1𝑐+𝑎+1𝑏+𝑐𝑎𝑏=0.(2.64) So (2.62) becomes 10=𝑑+𝑎+1𝑏+𝑑2𝑎𝑏𝑄𝑃+𝑒𝑎1𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏+1𝑃𝑄𝑃𝑓𝑎2𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏2+2𝑄𝑃𝑄𝑔+𝑎+2𝑏+2𝑐+𝑑+𝑔+𝑎𝑏𝑐𝑑𝑏𝑒𝑐𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑐𝑓𝑎𝑏2+𝑐2𝑑𝑎2𝑏2𝑃𝑄𝑃𝑄.(2.65) Multiplying (2.65) on the left side by 𝑃𝑄 and on the right side by 𝑃 yields 1𝑑+𝑎+1𝑏+𝑑𝑎𝑏𝑃𝑄P𝑄=0.(2.66) Therefore, 1𝑑+𝑎+1𝑏+𝑑𝑎𝑏=0.(2.67) Similarly, we can obtain 20=𝑒𝑎1𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑏𝑒𝑎2𝑏,10=𝑓𝑎2𝑏𝑐+𝑑𝑎𝑏𝑐𝑑𝑎𝑓𝑎𝑏2,20=𝑔+𝑎+2𝑏+2𝑐+𝑑+𝑔+𝑎𝑏𝑐𝑑𝑏𝑒𝑐𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑐𝑓𝑎𝑏2+𝑐2𝑑𝑎2𝑏2.(2.68) By (2.64) and (2.67), we can obtain 1𝑏+𝑐+𝑑+2𝑒𝑐𝑑𝑏1=0,𝑎+𝑐+𝑑+2𝑓𝑐𝑑𝑎=0.(2.69) Since 𝑎=𝑎1 and 𝑏=𝑏1, 𝑎=±𝑏. If 𝑎=𝑏, then (2.64) holds for any 𝑐, (2.67) holds for any 𝑑, and, for any 𝑐,𝑑,𝑒,𝑓 satisfying (2.69) and any 𝑔, 2𝑔+𝑎+2𝑏+2𝑐+𝑑+𝑔+𝑎𝑏𝑐𝑑𝑏𝑒𝑐𝑒𝑎2𝑏+𝑐𝑑𝑎𝑓𝑐𝑓𝑎𝑏2+𝑐2𝑑𝑎2𝑏2=𝑐2𝑐𝑑2𝑐𝑑(𝑒+𝑓)+𝑎(𝑒𝑓)=𝑐2𝑐𝑑2𝑐𝑑+(𝑐+𝑑)+𝑎1𝑎𝑐𝑑𝑎=0.(2.70) If 𝑎=𝑏, then, by (2.64) ~ (2.69), 𝑐=𝑑=𝑎 and 𝑒=𝑓=𝑎 and so 𝑔=𝑎 from (2.68).
Hence, we have (𝑑1) and (𝑑2).

Example 2.5. Let 𝑃=1000010000000000,𝑄=0010100100101011.(2.71) Obviously they are idempotent, and (𝑄𝑃)2=0 but (𝑃𝑄)20. By Theorem 2.4(𝑑2), 5𝑃𝑄+2𝑃𝑄2𝑄𝑃+25𝑃𝑄𝑃2𝑄𝑃𝑄2𝑃𝑄𝑃𝑄(2.72) is group involutory since 22+2(5/2)+2(2)=1 and 22+2(5/2)2(2)=1.

Similarly, we have the following result.

Theorem 2.6. Let 𝑃,𝑄𝑛×𝑛 be two different nonzero idempotent matrices, and let 𝐴 be a combination of the form 𝐴=𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄+𝑑𝑄𝑃+𝑒𝑃𝑄𝑃+𝑓𝑄𝑃𝑄+𝑄𝑃𝑄𝑃,(2.73) where 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓, with 𝑎,𝑏0. Suppose that 𝑄𝑃𝑄𝑃0,𝑃𝑄𝑃𝑄=0,(2.74) and any of the following sets of additional conditions hold:(e1)𝑎=𝑏=±1, 𝑐=𝑑=1, 𝑒=𝑓=±1,=1; (e2)𝑎=±1, 𝑏=1, 2𝑒+𝑐+𝑑±𝑐𝑑=±1, 2𝑓+𝑐+𝑑𝑐𝑑=1.Then 𝐴 is the group involutory matrix.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (11061005) and the Ministry of Education Science anf Technology Key Project (210164) and Grants (HCIC201103) of Guangxi Key Laborarory of Hybrid Computational and IC Design Analysis Open Fund.