Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 524271, 22 pages
http://dx.doi.org/10.1155/2012/524271
Research Article

Filtering-Based Fault Detection for Stochastic Markovian Jump System with Distributed Time-Varying Delays and Mixed Modes

1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
3School of Mathematics Science, Liaocheng University, Liaocheng 252000, China

Received 10 May 2012; Revised 10 November 2012; Accepted 13 November 2012

Academic Editor: Jong Hae Kim

Copyright © 2012 Yucai Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. X. Ding, Z. Maiying, T. Bingyong, and P. Zhang, “An LMI approach to the design of fault detection filter for time-delay LTI systems with unknown inputs,” in Proceedings of the American Control Conference, pp. 2137–2142, Arlington, Va, USA, June 2001. View at Scopus
  2. R. H. Chen, D. L. Mingori, and J. L. Speyer, “Optimal stochastic fault detection filter,” Automatica, vol. 39, no. 3, pp. 377–390, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. W. Li, F. Jiang, Z. Q. Wang, G. B. Zhou, and Z. C. Zhu, “Fault detection of Markov jumping linear systems,” Mathematical Problems in Engineering, vol. 2012, Article ID 141867, 27 pages, 2012. View at Google Scholar
  4. X. He, Z. Wang, and D. H. Zhou, “Robust fault detection for networked systems with communication delay and data missing,” Automatica, vol. 45, no. 11, pp. 2634–2639, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. P. Zhang and S. X. Ding, “On fault detection in linear discrete-time, periodic, and sampled-data systems,” Journal of Control Science and Engineering, vol. 2008, Article ID 849546, 18 pages, 2008. View at Google Scholar
  6. C. Peng, D. Yue, E. Tian, and Z. Gu, “Observer-based fault detection for networked control systems with network Quality of Services,” Applied Mathematical Modelling, vol. 34, no. 6, pp. 1653–1661, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. D. F. Zhang, H. Wang, B. C. Lu, and Z. Q. Wang, “LMI-based fault detection fuzzy observer design with multiple performance constraints for a class of non-linear systems: comparative study,” International Journal of Innovative Computing Information and Control, vol. 8, pp. 633–645, 2012. View at Google Scholar
  8. X. M. Zhang, Z. J. Zhang, and G. P. Lu, “Fault detection for state-delay fuzzy systems subject to random communication delay,” International Journal of Innovative Computing Information and Control, vol. 8, no. 4, pp. 2439–2451, 2012. View at Google Scholar
  9. M. Davoodi, H. Talebi, and H. Momeni, “A novel simultaneous fault detection and control approach based on dynamic observer,” International Journal of Innovative Computing Information and Control, vol. 8, pp. 4915–4930, 2012. View at Google Scholar
  10. P. Li and V. Kadirkamanathan, “Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 31, no. 3, pp. 337–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Meskin and K. Khorasani, “A geometric approach to fault detection and isolation of continuous-time Markovian jump linear systems,” IEEE Transactions on Automatic Control, vol. 55, no. 6, pp. 1343–1357, 2010. View at Publisher · View at Google Scholar
  12. H. R. Karimi, M. Zapateiro, and N. Luo, “A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations,” Journal of the Franklin Institute, vol. 347, no. 6, pp. 957–973, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. L. Guo and H. Wang, “Fault detection and diagnosis for general stochastic systems using B-spline expansions and nonlinear filters,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 8, pp. 1644–1652, 2005. View at Publisher · View at Google Scholar
  14. T. Li, L. Guo, and L. Wu, “Observer-based optimal fault detection using PDFs for time-delay stochastic systems,” Nonlinear Analysis: Real World Applications, vol. 9, no. 5, pp. 2337–2349, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. X. Mao, “Exponential stability of stochastic delay interval systems with Markovian switching,” IEEE Transactions on Automatic Control, vol. 47, no. 10, pp. 1604–1612, 2002. View at Publisher · View at Google Scholar
  16. Q. Zhu and J. Cao, “Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41, no. 2, pp. 341–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Liu, Z. Wang, and X. Liu, “An LMI approach to stability analysis of stochastic high-order Markovian jumping neural networks with mixed time delays,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 1, pp. 110–120, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. L. Zhang and E.-K. Boukas, “Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities,” Automatica, vol. 45, no. 2, pp. 463–468, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. P. Shi, E.-K. Boukas, and R. K. Agarwal, “Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay,” IEEE Transactions on Automatic Control, vol. 44, no. 11, pp. 2139–2144, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. P. Shi, Y. Xia, G. P. Liu, and D. Rees, “On designing of sliding-mode control for stochastic jump systems,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 97–103, 2006. View at Publisher · View at Google Scholar
  21. Z. Fei, H. Gao, and P. Shi, “New results on stabilization of Markovian jump systems with time delay,” Automatica, vol. 45, no. 10, pp. 2300–2306, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. H. Zhao, Q. Chen, and S. Xu, “H guaranteed cost control for uncertain Markovian jump systems with mode-dependent distributed delays and input delays,” Journal of the Franklin Institute, vol. 346, no. 10, pp. 945–957, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. Z. Wang, Y. Liu, and X. Liu, “Exponential stabilization of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays,” IEEE Transactions on Automatic Control, vol. 55, no. 7, pp. 1656–1662, 2010. View at Publisher · View at Google Scholar
  24. G. Wang, Q. Zhang, and V. Sreeram, “Delay-range-dependent H control for Markovian jump systems with mode-dependent time delays,” Asian Journal of Control, vol. 12, no. 6, pp. 704–713, 2010. View at Publisher · View at Google Scholar
  25. M. Liu, P. Shi, L. Zhang, and X. Zhao, “Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique,” IEEE Transactions on Circuits and Systems I, vol. 58, no. 11, pp. 2755–2764, 2011. View at Publisher · View at Google Scholar
  26. Z. Wu, H. Su, and J. Chu, “H filtering for singular Markovian jump systems with time delay,” International Journal of Robust and Nonlinear Control, vol. 20, no. 8, pp. 939–957, 2010. View at Publisher · View at Google Scholar
  27. J. Liu, Z. Gu, and S. Hu, “H filtering for Markovian jump systems with time-varying delays,” International Journal of Innovative Computing, Information and Control, vol. 7, no. 3, pp. 1299–1310, 2011. View at Google Scholar · View at Scopus
  28. Y. Dong, J. Sun, and Q. Wu, “H filtering for a class of stochastic Markovian jump systems with impulsive effects,” International Journal of Robust and Nonlinear Control, vol. 18, no. 1, pp. 1–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Shen, S. Xu, X. Song, and Y. Chu, “Delay-dependent H filtering for stochastic systems with Markovian switching and mixed mode-dependent delays,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 1, pp. 122–133, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. H. Shao, “Delay-range-dependent robust H filtering for uncertain stochastic systems with mode-dependent time delays and Markovian jump parameters,” Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1084–1095, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  31. H. Yan, M. Q.-H. Meng, H. Zhang, and H. Shi, “Robust H exponential filtering for uncertain stochastic time-delay systems with Markovian switching and nonlinearities,” Applied Mathematics and Computation, vol. 215, no. 12, pp. 4358–4369, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  32. C. X. Liu, Y. Q. Zhang, and H. X. Sun, “Finite-time H filtering for singular stochastic systems,” Journal of Applied Mathematics, vol. 2012, Article ID 615790, 16 pages, 2012. View at Google Scholar · View at Zentralblatt MATH
  33. M. Zhong, H. Ye, P. Shi, and G. Wang, “Fault detection for Markovian jump systems,” IEE Proceedings Control Theory & Applications, vol. 152, pp. 397–402, 2005. View at Publisher · View at Google Scholar
  34. M. Zhong, Q. Ding, and P. Shi, “Parity space-based fault detection for Markovian jump systems,” International Journal of Systems Science, vol. 40, no. 4, pp. 421–428, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  35. H. Wang, C. Wang, H. Gao, and L. Wu, “An LMI approach to fault detection and isolation filter design for Markovian jump system with mode-dependent time-delays,” in Proceedings of the American Control Conference, pp. 5686–5691, Minneapolis, Minn, USA, June 2006. View at Scopus
  36. Y. Y. Yin and P. Shi, “Gain-scheduled robust fault detectionon time-delay stochastic nonlinear systems,” IEEE Transactions on Industrial Electronics, vol. 58, pp. 4908–4916, 2011. View at Publisher · View at Google Scholar
  37. X. Yao, L. Wu, and W. X. Zheng, “Fault detection filter design for Markovian jump singular systems with intermittent measurements,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3099–3109, 2011. View at Publisher · View at Google Scholar
  38. L. Zhang, E.-K. Boukas, L. Baron, and H. R. Karimi, “Fault detection for discrete-time Markov jump linear systems with partially known transition probabilities,” International Journal of Control, vol. 83, no. 8, pp. 1564–1572, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  39. S. He and F. Liu, “Fuzzy model-based fault detection for Markov jump systems,” International Journal of Robust and Nonlinear Control, vol. 19, no. 11, pp. 1248–1266, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  40. S. He and F. Liu, “Filtering-based robust fault detection of fuzzy jump systems,” Fuzzy Sets and Systems, vol. 185, pp. 95–110, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  41. A. H. Abolmasoumi and H. R. Momeni, “Robust observer-based H control of a Markovian jump system with different delay and system modes,” International Journal of Control, Automation and Systems, vol. 9, pp. 768–776, 2011. View at Publisher · View at Google Scholar
  42. K. Gu, “An integral inequality in the stability problem of time-delay systems,” in Proceedings of the 39th IEEE Confernce on Decision and Control, pp. 2805–2810, Sydney, Australia, December 2000. View at Scopus