Abstract

We discuss the existence of solutions, under the Pettis integrability assumption, for a class of boundary value problems for fractional differential inclusions involving nonlinear nonseparated boundary conditions. Our analysis relies on the MΓΆnch fixed point theorem combined with the technique of measures of weak noncompactness.

1. Introduction

This paper is mainly concerned with the existence results for the following fractional differential inclusion with non-separated boundary conditions: 𝑐𝐷𝛼[]𝑒(𝑑)∈𝐹(𝑑,𝑒(𝑑)),π‘‘βˆˆπ½βˆΆ=0,𝑇,𝑇>0,𝑒(0)=πœ†1𝑒(𝑇)+πœ‡1,𝑒′(0)=πœ†2𝑒′(𝑇)+πœ‡2,πœ†1β‰ 1,πœ†2β‰ 1,(1.1) where 1<𝛼≀2 is a real number, 𝑐𝐷𝛼 is the Caputo fractional derivative. πΉβˆΆπ½Γ—πΈβ†’π’«(𝐸) is a multivalued map, 𝐸 is a Banach space with the norm β€–β‹…β€–, and 𝒫(𝐸) is the family of all nonempty subsets of 𝐸.

Recently, fractional differential equations have found numerous applications in various fields of physics and engineering [1, 2]. It should be noted that most of the books and papers on fractional calculus are devoted to the solvability of initial value problems for differential equations of fractional order. In contrast, the theory of boundary value problems for nonlinear fractional differential equations has received attention quite recently and many aspects of this theory need to be explored. For more details and examples, see [3–18] and the references therein.

To investigate the existence of solutions of the problem above, we use MΓΆnch’s fixed point theorem combined with the technique of measures of weak noncompactness, which is an important method for seeking solutions of differential equations. This technique was mainly initiated in the monograph of BanaΕ› and Goebel [19] and subsequently developed and used in many papers; see, for example, BanaΕ› and Sadarangani [20], Guo et al. [21], KrzyΕ›ka and Kubiaczyk [22], Lakshmikantham and Leela [23], MΓΆnch’s [24], O’Regan [25, 26], Szufla [27, 28], and the references therein.

In 2007, Ouahab [29] investigated the existence of solutions for 𝛼-fractional differential inclusions by means of selection theorem together with a fixed point theorem. Very recently, Chang and Nieto [30] established some new existence results for fractional differential inclusions due to fixed point theorem of multivalued maps. Problem (1.1) was discussed for single valued case in the paper [31]; some existence results for single- and multivalued cases for an extension of (1.1) to non-separated integral boundary conditions were obtained in the article [32] and [33]. About other results on fractional differential inclusions, we refer the reader to [34]. As far as we know, there are very few results devoted to weak solutions of nonlinear fractional differential inclusions. Motivated by the above mentioned papers, the purpose of this paper is to establish the existence results for the boundary value problem (1.1) by virtue of the MΓΆnch fixed point theorem combined with the technique of measures of weak noncompactness.

The remainder of this paper is organized as follows. In Section 2, we present some basic definitions and notations about fractional calculus and multivalued maps. In Section 3, we give main results for fractional differential inclusions. In the last section, an example is given to illustrate our main result.

2. Preliminaries and Lemmas

In this section, we introduce notation, definitions, and preliminary facts that will be used in the remainder of this paper. Let 𝐸 be a real Banach space with norm β€–β‹…β€– and dual space πΈβˆ—, and let (𝐸,πœ”)=(𝐸,𝜎(𝐸,πΈβˆ—)) denote the space 𝐸 with its weak topology. Here, let 𝐢(𝐽,𝐸) be the Banach space of all continuous functions from 𝐽 to 𝐸 with the norm β€–π‘¦β€–βˆž=sup{‖𝑦(𝑑)β€–βˆΆ0≀𝑑≀𝑇},(2.1) and let 𝐿1(𝐽,𝐸) denote the Banach space of functions π‘¦βˆΆπ½β†’πΈ that are the Lebesgue integrable with norm ‖𝑦‖𝐿1=ξ€œπ‘‡0‖𝑦(𝑑)‖𝑑𝑑.(2.2) We let 𝐿∞(𝐽,𝐸) to be the Banach space of bounded measurable functions π‘¦βˆΆπ½β†’πΈ equipped with the norm β€–π‘¦β€–πΏβˆž=inf{𝑐>0βˆΆβ€–π‘¦(𝑑)‖≀𝑐,a.e.π‘‘βˆˆπ½}.(2.3) Also, 𝐴𝐢1(𝐽,𝐸) will denote the space of functions π‘¦βˆΆπ½β†’πΈ that are absolutely continuous and whose first derivative, π‘¦ξ…ž, is absolutely continuous.

Let (𝐸,β€–β‹…β€–) be a Banach space, and let 𝑃cl(𝐸)={π‘Œβˆˆπ’«(𝐸)βˆΆπ‘Œisclosed}, 𝑃𝑏(𝐸)={π‘Œβˆˆπ’«(𝐸)βˆΆπ‘Œisbounded}, 𝑃cp(𝐸)={π‘Œβˆˆπ’«(𝐸)βˆΆπ‘Œiscompact}, and 𝑃cp,𝑐(𝐸)={π‘Œβˆˆπ’«(𝐸)βˆΆπ‘Œiscompactandconvex}. A multivalued map πΊβˆΆπΈβ†’π‘ƒ(𝐸) is convex (closed) valued if 𝐺(π‘₯) is convex (closed) for all π‘₯∈𝐸. We say that 𝐺 is bounded on bounded sets if 𝐺(𝐡)=βˆͺπ‘₯∈𝐡𝐺(π‘₯) is bounded in 𝐸 for all π΅βˆˆπ‘ƒπ‘(𝐸) (i.e., supπ‘₯∈𝐡{sup{β€–π‘¦β€–βˆΆπ‘¦βˆˆπΊ(π‘₯)}}<∞). The mapping 𝐺 is called upper semicontinuous (u.s.c.) on 𝐸 if for each π‘₯0∈𝐸, the set 𝐺(π‘₯0) is a nonempty closed subset of 𝐸 and if for each open set 𝑁 of 𝐸 containing 𝐺(π‘₯0), there exists an open neighborhood 𝑁0 of π‘₯0 such that 𝐺(𝑁0)βŠ†π‘. We say that 𝐺 is completely continuous if 𝐺(ℬ) is relatively compact for every β„¬βˆˆπ‘ƒπ‘(𝐸). If the multivalued map 𝐺 is completely continuous with nonempty compact values, then 𝐺 is u.s.c. if and only if 𝐺 has a closed graph (i.e., π‘₯𝑛→π‘₯βˆ—,π‘¦π‘›β†’π‘¦βˆ—,π‘¦π‘›βˆˆπΊ(π‘₯𝑛) imply π‘¦βˆ—βˆˆπΊ(π‘₯βˆ—)). The mapping 𝐺 has a fixed point if there is π‘₯∈𝐸 such that π‘₯∈𝐺(π‘₯). The set of fixed points of the multivalued operator 𝐺 will be denoted by Fix𝐺. A multivalued map πΊβˆΆπ½β†’π‘ƒcl(𝐸) is said to be measurable if for every π‘¦βˆˆπΈ, the function ξ€½||||ξ€Ύπ‘‘βŸΌπ‘‘(𝑦,𝐺(𝑑))=infπ‘¦βˆ’π‘§βˆΆπ‘§βˆˆπΊ(𝑑)(2.4) is measurable. For more details on multivalued maps, see the books of Aubin and Cellina [35], Aubin and Frankowska [36], Deimling [37], Hu and Papageorgiou [38], Kisielewicz [39], and Covitz and Nadler [40].

Moreover, for a given set 𝑉 of functions π‘£βˆΆπ½β†¦β„, let us denote by 𝑉(𝑑)={𝑣(𝑑)βˆΆπ‘£βˆˆπ‘‰}, π‘‘βˆˆπ½, and 𝑉(𝐽)={𝑣(𝑑)βˆΆπ‘£βˆˆπ‘‰,π‘‘βˆˆπ½}.

For any π‘¦βˆˆπΆ(𝐽,𝐸), let 𝑆𝐹,𝑦 be the set of selections of 𝐹 defined by 𝑆𝐹,𝑦=ξ€½π‘“βˆˆπΏ1(𝐽,𝐸)βˆΆπ‘“(𝑑)∈𝐹(𝑑,𝑦(𝑑))a.eξ€Ύ..π‘‘βˆˆπ½(2.5)

Definition 2.1. A function β„ŽβˆΆπΈβ†’πΈ is said to be weakly sequentially continuous if β„Ž takes each weakly convergent sequence in 𝐸 to a weakly convergent sequence in 𝐸 (i.e., for any (π‘₯𝑛)𝑛 in 𝐸 with π‘₯𝑛(𝑑)β†’π‘₯(𝑑) in (𝐸,πœ”) then β„Ž(π‘₯𝑛(𝑑))β†’β„Ž(π‘₯(𝑑)) in (𝐸,πœ”) for each 𝑑→𝐽).

Definition 2.2. A function πΉβˆΆπ‘„β†’π‘ƒcl,cv(𝑄) has a weakly sequentially closed graph if for any sequence (π‘₯𝑛,𝑦𝑛)∞1βˆˆπ‘„Γ—π‘„, π‘¦π‘›βˆˆπΉ(π‘₯𝑛) for π‘›βˆˆ{1,2,…} with π‘₯𝑛(𝑑)β†’π‘₯(𝑑) in (𝐸,πœ”) for each π‘‘βˆˆπ½ and 𝑦𝑛(𝑑)→𝑦(𝑑) in (𝐸,πœ”) for each π‘‘βˆˆπ½, then π‘¦βˆˆπΉ(π‘₯).

Definition 2.3 (see [41]). The function π‘₯βˆΆπ½β†’πΈ is said to be the Pettis integrable on 𝐽 if and only if there is an element π‘₯𝐽∈𝐸 corresponding to each πΌβŠ‚π½ such that πœ‘(π‘₯𝐼∫)=πΌπœ‘(π‘₯(𝑠))𝑑𝑠 for all πœ‘βˆˆπΈβˆ—, where the integral on the right is supposed to exist in the sense of Lebesgue. By definition, π‘₯𝐼=∫𝐼π‘₯(𝑠)𝑑𝑠.
Let 𝑃(𝐽,𝐸) be the space of all 𝐸-valued Pettis integrable functions in the interval 𝐽.

Lemma 2.4 (see [41]). If π‘₯(β‹…) is Pettis’ integrable and β„Ž(β‹…) is a measurable and essentially bounded real-valued function, then π‘₯(β‹…)β„Ž(β‹…) is Pettis’ integrable.

Definition 2.5 (see [42]). Let 𝐸 be a Banach space, Ω𝐸 the set of all bounded subsets of 𝐸, and 𝐡1 the unit ball in 𝐸. The De Blasi measure of weak noncompactness is the map π›½βˆΆΞ©πΈβ†’[0,∞) defined by 𝛽(𝑋)=infπœ–>0∢thereexistsaweaklycompactsubsetΞ©of𝐸suchthatπ‘‹βŠ‚πœ–π΅1ξ€Ύ.+Ξ©(2.6)

Lemma 2.6 (see [42]). The De Blasi measure of noncompactness satisfies the following properties:(a)π‘†βŠ‚π‘‡β‡’π›½(𝑆)≀𝛽(𝑇);(b)𝛽(𝑆)=0⇔𝑆 is relatively weakly compact;(c)𝛽(𝑆βˆͺ𝑇)=max{𝛽(𝑆),𝛽(𝑇)};(d)𝛽(π‘†πœ”)=𝛽(𝑆), where π‘†πœ” denotes the weak closure of 𝑆;(e)𝛽(𝑆+𝑇)≀𝛽(𝑆)+𝛽(𝑇);(f)𝛽(π‘Žπ‘†)=|π‘Ž|𝛼(𝑆);(g)𝛽(conv(𝑆))=𝛽(𝑆);(h)𝛽(βˆͺ|πœ†|β‰€β„Žπœ†π‘†)=β„Žπ›½(𝑆).
The following result follows directly from the Hahn-Banach theorem.

Lemma 2.7. Let 𝐸 be a normed space with π‘₯0β‰ 0. Then there exists πœ‘βˆˆπΈβˆ— with β€–πœ‘β€–=1 and πœ‘(π‘₯0)=β€–π‘₯0β€–.
For completeness, we recall the definitions of the Pettis-integral and the Caputo derivative of fractional order.

Definition 2.8 (see [25]). Let β„ŽβˆΆπ½β†’πΈ be a function. The fractional Pettis integral of the function β„Ž of order π›Όβˆˆβ„+ is defined by πΌπ›Όξ€œβ„Ž(𝑑)=𝑑0(π‘‘βˆ’π‘ )π›Όβˆ’1Ξ“(𝛼)β„Ž(𝑠)𝑑𝑠,(2.7) where the sign β€œβˆ«β€ denotes the Pettis integral and Ξ“ is the gamma function.

Definition 2.9 (see [3]). For a function β„ŽβˆΆπ½β†’πΈ, the Caputo fractional-order derivative of β„Ž is defined by ξ€·π‘π·π›Όπ‘Ž+β„Žξ€Έ(1𝑑)=ξ€œΞ“(π‘›βˆ’π›Ό)π‘‘π‘Ž(π‘‘βˆ’π‘ )π‘›βˆ’π›Όβˆ’1β„Ž(𝑛)(𝑠)𝑑𝑠,π‘›βˆ’1<𝛼<𝑛,(2.8) where 𝑛=[𝛼]+1 and [𝛼] denotes the integer part of 𝛼.

Lemma 2.10 (see [43]). Let 𝐸 be a Banach space with 𝑄 a nonempty, bounded, closed, convex, equicontinuous subset of 𝐢(𝐽,𝐸). Suppose πΉβˆΆπ‘„β†’π‘ƒcl,cv(𝑄) has a weakly sequentially closed graph. If the implication 𝑉=conv({0}βˆͺ𝐹(𝑉))βŸΉπ‘‰π‘–π‘ π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’π‘™π‘¦π‘€π‘’π‘Žπ‘˜π‘™π‘¦π‘π‘œπ‘šπ‘π‘Žπ‘π‘‘(2.9) holds for every subset 𝑉 of 𝑄, then the operator inclusion π‘₯∈𝐹(π‘₯) has a solution in 𝑄.

3. Main Results

Let us start by defining what we mean by a solution of problem (1.1).

Definition 3.1. A function π‘¦βˆˆπ΄πΆ1(𝐽,𝐸) is said to be a solution of (1.1), if there exists a function π‘£βˆˆπΏ1(𝐽,𝐸) with 𝑣(𝑑)∈𝐹(𝑑,𝑦(𝑑)) for a.e. π‘‘βˆˆπ½, such that 𝑐𝐷𝛼𝑦(𝑑)=𝑣(𝑑)a.e.π‘‘βˆˆπ½,1<𝛼≀2,(3.1) and 𝑦 satisfies conditions 𝑒(0)=πœ†1𝑒(𝑇)+πœ‡1,𝑒′(0)=πœ†2𝑒′(𝑇)+πœ‡2,πœ†1β‰ 1,πœ†2β‰ 1.
To prove the main results, we need the following assumptions:(H1)πΉβˆΆπ½Γ—πΈβ†’π‘ƒcp,cv(𝐸) has weakly sequentially closed graph;(H2)for each continuous π‘₯∈𝐢(𝐽,𝐸), there exists a scalarly measurable function π‘£βˆΆπ½β†’πΈ with 𝑣(𝑑)∈𝐹(𝑑,π‘₯(𝑑)) a.e. on 𝐽 and 𝑣 is Pettis integrable on 𝐽;(H3)there exist π‘π‘“βˆˆπΏβˆž(𝐽,ℝ+) and a continuous nondecreasing function πœ“βˆΆ[0,∞)β†’[0,∞) such that ‖𝐹(𝑑,𝑒)β€–=sup{|𝑣|βˆΆπ‘£βˆˆπΉ(𝑑,𝑒)}≀𝑝𝑓(𝑑)πœ“(‖𝑒‖);(3.2)(H4)for each bounded set π·βŠ‚πΈ, and each π‘‘βˆˆπΌ, the following inequality holds: 𝛽(𝐹(𝑑,𝐷))≀𝑝𝑓(𝑑)⋅𝛽(𝐷);(3.3)(H5)there exists a constant 𝑅>0 such that π‘…π‘”βˆ—+β€–β€–π‘π‘“β€–β€–πΏβˆžπœ“(𝑅)πΊβˆ—>1,(3.4)where π‘”βˆ— and πΊβˆ— are defined by (3.9).

Theorem 3.2. Let 𝐸 be a Banach space. Assume that hypotheses (H1)–(H5) are satisfied. If β€–β€–π‘π‘“β€–β€–πΏβˆžπΊβˆ—<1,(3.5) then the problem (1.1) has at least one solution on 𝐽.

Proof. Let 𝜌∈𝐢[0,𝑇] be a given function; it is obvious that the boundary value problem [18] 𝑐𝐷𝛼𝑒(𝑑)=𝜌(𝑑),π‘‘βˆˆ(0,𝑇),1<𝛼≀2𝑒(𝑑)=πœ†1𝑒(𝑇)+πœ‡1,π‘’ξ…ž(0)=πœ†2π‘’ξ…ž(𝑇)+πœ‡2,πœ†1β‰ 1,πœ†2β‰ 1(3.6) has a unique solution ξ€œπ‘’(𝑑)=𝑇0𝐺(𝑑,𝑠)𝜌(𝑠)𝑑𝑠+𝑔(𝑑),(3.7) where 𝐺(𝑑,𝑠) is defined by the formula ⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩𝐺(𝑑,𝑠)=(π‘‘βˆ’π‘ )π›Όβˆ’1βˆ’πœ†Ξ“(𝛼)1(π‘‡βˆ’π‘ )π›Όβˆ’1ξ€·πœ†1ξ€Έ+πœ†βˆ’1Ξ“(𝛼)2ξ€Ίπœ†1𝑇+1βˆ’πœ†1𝑑(π‘‡βˆ’π‘ )π›Όβˆ’2ξ€·πœ†2πœ†βˆ’1ξ€Έξ€·1ξ€Έ,βˆ’1Ξ“(π›Όβˆ’1)ifβˆ’πœ†0≀𝑠≀𝑑≀𝑇,1(π‘‡βˆ’π‘ )π›Όβˆ’1ξ€·πœ†1ξ€Έ+πœ†βˆ’1Ξ“(𝛼)2ξ€Ίπœ†1𝑇+1βˆ’πœ†1𝑑(π‘‡βˆ’π‘ )π›Όβˆ’2ξ€·πœ†2πœ†βˆ’1ξ€Έξ€·1ξ€Έ,βˆ’1Ξ“(π›Όβˆ’1)ifπœ‡0≀𝑑≀𝑠≀𝑇,𝑔(𝑑)=2ξ€Ίπœ†1𝑇+1βˆ’πœ†1ξ€Έπ‘‘ξ€»ξ€·πœ†2πœ†βˆ’1ξ€Έξ€·1ξ€Έβˆ’πœ‡βˆ’11πœ†1.βˆ’1(3.8)
From the expression of 𝐺(𝑑,𝑠) and 𝑔(𝑑), it is obvious that 𝐺(𝑑,𝑠) is continuous on 𝐽×𝐽 and 𝑔(𝑑) is continuous on 𝐽. Denote by πΊβˆ—ξ‚»ξ€œ=sup𝑇0||||𝐺(𝑑,𝑠)𝑑𝑠,π‘‘βˆˆπ½,π‘”βˆ—=max0≀𝑑≀𝑇‖𝑔(𝑑)β€–.(3.9)
We transform the problem (1.1) into fixed point problem by considering the multivalued operator π‘βˆΆπΆ(𝐽,𝐸)→𝑃cl,cv(𝐢(𝐽,𝐸)) defined by ξ‚»ξ€œπ‘(π‘₯)=β„ŽβˆˆπΆ(𝐽,𝐸)βˆΆβ„Ž(𝑑)=𝑔(𝑑)+𝑇0𝐺(𝑑,𝑠)𝑣(𝑠)𝑑𝑠,π‘£βˆˆπ‘†πΉ,π‘₯ξ‚Ό,(3.10) and refer to [31] for defining the operator 𝑁. Clearly, the fixed points of 𝑁 are solutions of Problem (1.1). We first show that (3.10) makes sense. To see this, let π‘₯∈𝐢(𝐽,𝐸); by (H2) there exists a Pettis’ integrable function π‘£βˆΆπ½β†’πΈ such that 𝑣(𝑑)∈𝐹(𝑑,π‘₯(𝑑)) for a.e. π‘‘βˆˆπ½. Since 𝐺(𝑑,β‹…)∈𝐿∞(𝐽), then 𝐺(𝑑,β‹…)𝑣(β‹…) is Pettis integrable and thus 𝑁 is well defined.
Let 𝑅>0, and consider the set 𝐷=π‘₯∈𝐢(𝐽,𝐸)βˆΆβ€–π‘₯β€–βˆžβ€–β€–π‘₯𝑑≀𝑅,1ξ€Έξ€·π‘‘βˆ’π‘₯2‖‖≀‖‖𝑔𝑑1ξ€Έξ€·π‘‘βˆ’π‘”2ξ€Έβ€–β€–+β€–β€–π‘π‘“β€–β€–πΏβˆžξ€œπœ“(𝑅)𝑇0‖‖𝐺𝑑2𝑑,π‘ βˆ’πΊ1ξ€Έβ€–β€–,𝑠𝑑𝑠for𝑑1,𝑑2ξ‚Ό;∈𝐽(3.11) clearly, the subset 𝐷 is a closed, convex, bounded, and equicontinuous subset of 𝐢(𝐽,𝐸). We shall show that 𝑁 satisfies the assumptions of Lemma 2.10. The proof will be given in four steps.
Step  1. We will show that the operator 𝑁(π‘₯) is convex for each π‘₯∈𝐷.
Indeed, if β„Ž1 and β„Ž2 belong to 𝑁(π‘₯), then there exists Pettis’ integrable functions 𝑣1(𝑑), 𝑣2(𝑑)∈𝐹(𝑑,π‘₯(𝑑)) such that, for all π‘‘βˆˆπ½, we have β„Žπ‘–ξ€œ(𝑑)=𝑔(𝑑)+𝑇0𝐺(𝑑,𝑠)𝑣𝑖(𝑠)𝑑𝑠,𝑖=1,2.(3.12) Let 0≀𝑑≀1. Then, for each π‘‘βˆˆπ½, we have ξ€Ίπ‘‘β„Ž1+(1βˆ’π‘‘)β„Ž2ξ€»ξ€œ(𝑑)=𝑔(𝑑)+𝑇0𝐺(𝑑,𝑠)𝑑𝑣1(𝑠)+(1βˆ’π‘‘)𝑣2ξ€»(𝑠)𝑑𝑠.(3.13) Since 𝐹 has convex values, (𝑑𝑣1+(1βˆ’π‘‘)𝑣2)(𝑑)∈𝐹(𝑑,𝑦) and we have π‘‘β„Ž1+(1βˆ’π‘‘)β„Ž2βˆˆπ‘(π‘₯).
Step  2. We will show that the operator 𝑁 maps 𝐷 into 𝐷.
To see this, take π‘’βˆˆπ‘π·. Then there exists π‘₯∈𝐷 with π‘’βˆˆπ‘(π‘₯) and there exists a Pettis integrable function π‘£βˆΆπ½β†’πΈ with 𝑣(𝑑)∈𝐹(𝑑,π‘₯(𝑑)) for a.e. π‘‘βˆˆπ½. Without loss of generality, we assume 𝑒(𝑠)β‰ 0 for all π‘ βˆˆπ½. Then, there exists πœ‘π‘ βˆˆπΈβˆ— with β€–πœ‘π‘ β€–=1 and πœ‘π‘ (𝑒(𝑠))=‖𝑒(𝑠)β€–. Hence, for each fixed π‘‘βˆˆπ½, we have ‖𝑒(𝑑)β€–=πœ‘π‘‘(𝑒(𝑑))=πœ‘π‘‘ξ‚΅ξ€œπ‘”(𝑑)+𝑇0𝐺(𝑑,𝑠)𝑣(𝑠)π‘‘π‘ β‰€πœ‘π‘‘(𝑔(𝑑))+πœ‘π‘‘ξ‚΅ξ€œπ‘‡0ξ‚Άξ€œπΊ(𝑑,𝑠)𝑣(𝑠)𝑑𝑠≀‖𝑔(𝑑)β€–+𝑇0‖𝐺(𝑑,𝑠)β€–πœ‘π‘‘(𝑣(𝑠))π‘‘π‘ β‰€π‘”βˆ—+πΊβˆ—πœ“ξ€·β€–π‘₯β€–βˆžξ€Έβ€–β€–π‘π‘“β€–β€–πΏβˆž.(3.14)
Therefore, by (H5), we have β€–π‘’β€–βˆžβ‰€π‘”βˆ—+β€–β€–π‘π‘“β€–β€–πΏβˆžπΊβˆ—πœ“ξ€·β€–π‘…β€–βˆžξ€Έβ‰€π‘….(3.15)
Next suppose π‘’βˆˆπ‘π· and 𝜏1,𝜏2∈𝐽, with 𝜏1<𝜏2 so that 𝑒(𝜏2)βˆ’π‘’(𝜏1)β‰ 0. Then, there exists πœ‘βˆˆπΈβˆ— such that ‖𝑒(𝜏2)βˆ’π‘’(𝜏1)β€–=πœ‘(𝑒(𝜏2)βˆ’π‘’(𝜏1)). Hence, β€–β€–π‘’ξ€·πœ2ξ€Έξ€·πœβˆ’π‘’1‖‖𝑔𝑑=πœ‘2ξ€Έξ€·π‘‘βˆ’π‘”1ξ€Έ+ξ€œπ‘‡0ξ€ΊπΊξ€·πœ2ξ€Έξ€·πœ,π‘ βˆ’πΊ1𝑔𝑑,𝑠⋅𝑣(𝑠)π‘‘π‘ β‰€πœ‘2ξ€Έξ€·π‘‘βˆ’π‘”1ξ‚΅ξ€œξ€Έξ€Έ+πœ‘π‘‡0ξ€ΊπΊξ€·πœ2ξ€Έξ€·πœ,π‘ βˆ’πΊ1≀‖‖𝑔𝑑,𝑠⋅𝑣(𝑠)𝑑𝑠2ξ€Έξ€·π‘‘βˆ’π‘”1ξ€Έβ€–β€–+ξ€œπ‘‡0β€–β€–πΊξ€·πœ2ξ€Έξ€·πœ,π‘ βˆ’πΊ1‖‖‖≀‖‖𝑔𝑑,𝑠⋅‖𝑣(𝑠)𝑑𝑠2ξ€Έξ€·π‘‘βˆ’π‘”1‖‖‖‖𝑝+πœ“(𝑅)π‘“β€–β€–πΏβˆžξ€œπ‘‡0β€–β€–πΊξ€·πœ2ξ€Έξ€·πœ,π‘ βˆ’πΊ1ξ€Έβ€–β€–,𝑠𝑑𝑠;(3.16) this means that π‘’βˆˆπ·.
Step  3. We will show that the operator 𝑁 has a weakly sequentially closed graph.
Let (π‘₯𝑛,𝑦𝑛)∞1 be a sequence in 𝐷×𝐷 with π‘₯𝑛(𝑑)β†’π‘₯(𝑑) in (𝐸,πœ”) for each π‘‘βˆˆπ½, 𝑦𝑛(𝑑)→𝑦(𝑑) in (𝐸,πœ”) for each π‘‘βˆˆπ½, and π‘¦π‘›βˆˆπ‘(π‘₯𝑛) for π‘›βˆˆ{1,2,…}. We will show that π‘¦βˆˆπ‘π‘₯. By the relation π‘¦π‘›βˆˆπ‘(π‘₯𝑛), we mean that there exists π‘£π‘›βˆˆπ‘†πΉ,π‘₯𝑛 such that π‘¦π‘›ξ€œ(𝑑)=𝑔(𝑑)+𝑇0𝐺(𝑑,𝑠)𝑣𝑛(𝑠)𝑑𝑠.(3.17)
We must show that there exists π‘£βˆˆπ‘†πΉ,π‘₯ such that, for each π‘‘βˆˆπ½, ξ€œπ‘¦(𝑑)=𝑔(𝑑)+𝑇0𝐺(𝑑,𝑠)𝑣(𝑠)𝑑𝑠.(3.18)
Since 𝐹(β‹…,β‹…) has compact values, there exists a subsequence π‘£π‘›π‘š such that π‘£π‘›π‘š(β‹…)βŸΆπ‘£(β‹…)in(𝐸,πœ”)asπ‘£π‘šβŸΆβˆžπ‘›π‘šξ€·(𝑑)βˆˆπΉπ‘‘,π‘₯𝑛(𝑑)a.e.π‘‘βˆˆπ½.(3.19) Since 𝐹(𝑑,β‹…) has a weakly sequentially closed graph, π‘£βˆˆπΉ(𝑑,π‘₯). The Lebesgue dominated convergence theorem for the Pettis integral then implies that for each πœ‘βˆˆπΈβˆ—, πœ‘ξ€·π‘¦π‘›ξ€Έξ‚΅ξ€œ(𝑑)=πœ‘π‘”(𝑑)+𝑇0𝐺(𝑑,𝑠)π‘£π‘›ξ‚Άξ‚΅ξ€œ(𝑠)π‘‘π‘ βŸΆπœ‘π‘”(𝑑)+𝑇0ξ‚Ά;𝐺(𝑑,𝑠)𝑣(𝑠)𝑑𝑠(3.20) that is, 𝑦𝑛(𝑑)→𝑁π‘₯(𝑑) in (𝐸,𝑀). Repeating this for each π‘‘βˆˆπ½ shows 𝑦(𝑑)βˆˆπ‘π‘₯(𝑑).
Step  4. The implication (2.9) holds. Now let 𝑉 be a subset of 𝐷 such that π‘‰βŠ‚conv(𝑁(𝑉)βˆͺ{0}). Clearly, 𝑉(𝑑)βŠ‚conv(𝑁(𝑉)βˆͺ{0}) for all π‘‘βˆˆπ½. Hence, 𝑁𝑉(𝑑)βŠ‚π‘π·(𝑑),π‘‘βˆˆπ½, is bounded in 𝑃(𝐸).
Since function 𝑔 is continuous on 𝐽, the set {𝑔(𝑑),π‘‘βˆˆπ½}βŠ‚πΈ is compact, so 𝛽(𝑔(𝑑))=0. By assumption (H4) and the properties of the measure 𝛽, we have for each π‘‘βˆˆπ½ξ‚»ξ€œπ›½(𝑁(𝑉)(𝑑))=𝛽𝑔(𝑑)+𝑇0𝐺(𝑑,𝑠)𝑣(𝑠)π‘‘π‘ βˆΆπ‘£βˆˆπ‘†πΉ,π‘₯ξ‚Όξ‚»ξ€œ,π‘₯βˆˆπ‘‰,π‘‘βˆˆπ½β‰€π›½{𝑔(𝑑)βˆΆπ‘‘βˆˆπ½}+𝛽𝑇0𝐺(𝑑,𝑠)𝑣(𝑠)π‘‘π‘ βˆΆπ‘£βˆˆπ‘†πΉ,π‘₯ξ‚Όξ‚»ξ€œ,π‘₯βˆˆπ‘‰,π‘‘βˆˆπ½β‰€π›½π‘‡0ξ‚Όβ‰€ξ€œπΊ(𝑑,𝑠)𝑣(𝑠)π‘‘π‘ βˆΆπ‘£(𝑑)∈𝐹(𝑑,π‘₯(𝑑)),π‘₯βˆˆπ‘‰,π‘‘βˆˆπ½π‘‡0‖𝐺(𝑑,𝑠)‖⋅𝑝𝑓≀‖‖𝑝(𝑠)⋅𝛽(𝑉(𝑠))π‘‘π‘ π‘“β€–β€–πΏβˆžβ‹…ξ€œπ‘‡0≀‖‖𝑝‖𝐺(𝑑,𝑠)‖⋅𝛽(𝑉(𝑠))π‘‘π‘ π‘“β€–β€–πΏβˆžβ‹…πΊβˆ—β‹…ξ€œπ‘‡0𝛽(𝑉(𝑠))𝑑𝑠,(3.21) which gives β€–π‘£β€–βˆžβ‰€β€–β€–π‘π‘“β€–β€–πΏβˆžβ‹…β€–π‘£β€–βˆžβ‹…πΊβˆ—.(3.22)
This means that β€–π‘£β€–βˆžβ‹…ξ€Ίβ€–β€–π‘1βˆ’π‘“β€–β€–πΏβˆžβ‹…πΊβˆ—ξ€»β‰€0.(3.23) By (3.5) it follows that β€–π‘£β€–βˆž=0; that is, 𝑣=0 for each π‘‘βˆˆπ½, and then 𝑉 is relatively weakly compact in 𝐸. In view of Lemma 2.10, we deduce that 𝑁 has a fixed point which is obviously a solution of Problem (1.1). This completes the proof.

In the sequel we present an example which illustrates Theorem 3.2.

4. An Example

Example 4.1. We consider the following partial hyperbolic fractional differential inclusion of the form 𝑐𝐷𝛼𝑒𝑛1(𝑑)∈7𝑒𝑑+13ξ€·||𝑒1+𝑛||ξ€Έ[](𝑑),π‘‘βˆˆπ½βˆΆ=0,𝑇,1<𝛼≀2,𝑒(0)=πœ†1𝑒(𝑇)+πœ‡1,π‘’ξ…ž(0)=πœ†2π‘’ξ…ž(𝑇)+πœ‡2,(4.1)
Set 𝑇=1, πœ†1=πœ†2=βˆ’1, πœ‡1=πœ‡2=0, then 𝑔(𝑑)=0. So π‘”βˆ—=0.
Let 𝐸=𝑙1=𝑒𝑒=1,𝑒2,…,π‘’π‘›ξ€ΈβˆΆ,β€¦βˆžξ“π‘›=1||𝑒𝑛||ξƒ°<∞(4.2) with the norm ‖𝑒‖𝐸=βˆžξ“π‘›=1||𝑒𝑛||.(4.3) Set 𝑒𝑒=1,𝑒2,…,𝑒𝑛𝑓,…,𝑓=1,𝑓2,…,𝑓𝑛,𝑓,…𝑛𝑑,𝑒𝑛=17𝑒𝑑+13ξ€·||𝑒1+𝑛||ξ€Έ,π‘‘βˆˆπ½.(4.4) For each π‘’π‘›βˆˆβ„ and π‘‘βˆˆπ½, we have ||𝑓𝑛𝑑,𝑒𝑛||≀17𝑒𝑑+13ξ€·||𝑒1+𝑛||ξ€Έ.(4.5)
Hence conditions (H1), (H2), and (H3) hold with 𝑝𝑓(𝑑)=1/(7𝑒𝑑+13),π‘‘βˆˆπ½, and πœ“(𝑒)=1+𝑒,π‘’βˆˆ[0,∞). For any bounded set π·βŠ‚π‘™1, we have 1𝛽(𝐹(𝑑,𝐷))≀7𝑒𝑑+13⋅𝛽(𝐷),βˆ€π‘‘βˆˆπ½.(4.6) Hence (H4) is satisfied. From (3.8), we have ⎧βŽͺ⎨βŽͺ⎩𝐺(𝑑,𝑠)=(π‘‘βˆ’π‘ )π›Όβˆ’1Ξ“βˆ’(𝛼)(1βˆ’π‘ )π›Όβˆ’1+2Ξ“(𝛼)(1βˆ’2𝑑)(1βˆ’π‘ )π›Όβˆ’2,4Ξ“(π›Όβˆ’1)ifβˆ’0≀𝑠≀𝑑≀1,(1βˆ’π‘ )π›Όβˆ’1+2Ξ“(𝛼)(1βˆ’2𝑑)(1βˆ’π‘ )π›Όβˆ’2,4Ξ“(π›Όβˆ’1)if0≀𝑑≀𝑠≀1.(4.7) So, we get ξ€œ10ξ€œπΊ(𝑑,𝑠)𝑑𝑠=𝑑0ξ€œπΊ(𝑑,𝑠)𝑑𝑠+1𝑑=ξ€œπΊ(𝑑,𝑠)𝑑𝑠𝑑0ξ‚Έ(π‘‘βˆ’π‘ )π›Όβˆ’1Ξ“βˆ’(𝛼)(1βˆ’π‘ )π›Όβˆ’1+2Ξ“(𝛼)(1βˆ’2𝑑)(1βˆ’π‘ )π›Όβˆ’2ξ‚Ή+ξ€œ4Ξ“(π›Όβˆ’1)𝑑𝑠1π‘‘ξ‚Έβˆ’(1βˆ’π‘ )π›Όβˆ’1+2Ξ“(𝛼)(1βˆ’2𝑑)(1βˆ’π‘ )π›Όβˆ’2ξ‚Ή=4Ξ“(π›Όβˆ’1)𝑑𝑠4π‘‘π›Όβˆ’2+4Ξ“(𝛼+1)1βˆ’2𝑑.4Ξ“(𝛼)(4.8) A simple computation gives πΊβˆ—<1+14Ξ“(𝛼)2Ξ“(𝛼+1)∢=𝐴𝛼.(4.9) We shall check that condition (3.5) is satisfied. Indeed β€–π‘β€–πΏβˆžπΊβˆ—<17𝑒13𝐴𝛼<1,(4.10) which is satisfied for some π›Όβˆˆ(1,2], and (H5) is satisfied for 𝑅>𝐴𝛼/(7𝑒13βˆ’π΄π›Ό). Then by Theorem 3.2, the problem (4.1) has at least one solution on 𝐽 for values of 𝛼 satisfying (4.10).

Acknowledgments

The first author’s work was supported by NNSF of China (11161027), NNSF of China (10901075), and the Key Project of Chinese Ministry of Education (210226). The authors are grateful to the referees for their comments according to which the paper has been revised.