Abstract

Laplace transform and new homotopy perturbation methods are adopted to study Fisher-type equations analytically. The solutions introduced in this study can be used to obtain the closed form of the solutions if they are required. The combined method needs less work in comparison with the other homotopy perturbation methods and decreases volume of calculations considerably. The method is tested on various examples, and results show that new method is more effective and convenient to use, and high accuracy of it is evident.

1. Introduction

Solving nonlinear partial differential equations is very important in mathematical sciences, and it is one of the most stimulating and particularly active areas of the research. In the recent years, an increasing interest of scientists and engineers has been devoted to the analytical asymptotic techniques for solving nonlinear problems. Many new numerical techniques have been widely applied to the nonlinear problems. Based on homotopy, which is a basic concept in topology, general analytical method, namely, the homotopy perturbation method (HPM) is established by He [1โ€“8] in 1998 to obtain series solutions of nonlinear differential equations. The He's HPM has been already used to solve various functional equations. In this method, the nonlinear problem is transferred to an infinite number of subproblems and then the solution is approximated by the sum of the solutions of the first several subproblems. This simple method has been applied to solve linear and nonlinear equations of heat transfer [9โ€“11], fluid mechanics [12], nonlinear Schrodinger equations [13], integral equations [14], boundary value problems [15], fractional KdV-Burgers equation [16], and nonlinear system of second-order boundary value problems [17]. Khan, et al. [18] solved the long porous slider problem by homotopy perturbation method which is coupled nonlinear ordinary differential equations resulting from the momentum equation. Also, Khan, et al. [19] studied the long porous slider problem in which the fluid is injected through the porous bottom by the Adomian decomposition method (ADM). This problem is similar to the problem we consider in this paper and has many application in chemical reactions, heat transfer, and chromatography. Recently, Moosaei et al. [20] suggest an alternative way to a similar problem to the problem we consider in this work. They solved the perturbed nonlinear Schrodinger's equation with Kerr law nonlinearity by using the first integral method.

In the present work, we construct the solution using a different approach. In this work, we obtain an analytical approximation to the solution of the nonlinear Fisher equation using combination of Laplace transform and new homotopy perturbation method (LTNHPM). The Fisher equation as a nonlinear model for a physical system involving linear diffusion and nonlinear growth takes the nondimensional form: ๐‘ข๐‘ก=๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐›ผ1โˆ’๐‘ข๐›ฝ๎€ธ(๐‘ขโˆ’๐‘Ž).(1.1)

A kink-like traveling wave solutions of (1.1) describe a constant-velocity front of transition from one homogeneous state to another. On the other hand, the solitons appear as a result of a balance between weak nonlinearity and dispersion. Therefore, in mathematics and physics, a soliton is described as a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. โ€œDispersive effectsโ€ refer to dispersion relation between the frequency and the speed of the waves. Solitons arise as the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. However, when diffusion takes part, instead of dispersion, energy release by nonlinearity balances energy consumption by diffusion which results in traveling waves or fronts. Hence, traveling wave fronts are a great extent studied solution form for reaction-diffusion equations, with important applications to chemistry, biology, and medicine. Several studies in the literature, employing a large variety of methods, have been conducted to derive explicit solutions for the Fisher equation (1.1) and for the generalized Fisher equation. For more details about these investigations, the reader is referred to [21โ€“26] and the references therein. Recently, Wazwaz and Gorguis [27] studied the Fisher equation, the general Fisher equation, and nonlinear diffusion equation of the Fisher type subject to initial conditions by using Adomian decomposition method.

The results obtained via LTNHPM confirm validity of the proposed method. The rest of this paper is organized as follows.

In Section 2, basic ideas of NHPM and the homotopy perturbation method are presented. In Section 3, the uses of NHPM for solving nonlinear Fisher-type equations are presented. Some examples are solved by the proposed method in Section 4. Conclusion will be appeared in Section 5.

2. Basic Ideas of the LTNHPM

To illustrate the basic ideas of this method, let us consider the following nonlinear differential equation: ๐ด(๐‘ข)โˆ’๐‘“(๐‘Ÿ)=0,๐‘Ÿโˆˆฮฉ,(2.1) with the following initial conditions: ๐‘ข(0)=๐›ผ0,๐‘ข๎…ž(0)=๐›ผ1,โ€ฆ,๐‘ข(๐‘›โˆ’1)(0)=๐›ผ๐‘›โˆ’1,(2.2) where ๐ด is a general differential operator and ๐‘“(๐‘Ÿ) is a known analytical function. The operator ๐ด can be divided into two parts, ๐ฟ and ๐‘, where ๐ฟ is a linear and ๐‘ is a nonlinear operator. Therefore, (2.1) can be rewritten as ๐ฟ(๐‘ข)+๐‘(๐‘ข)โˆ’๐‘“(๐‘Ÿ)=0.(2.3) Based on NHPM [28], we construct a homotopy ๐‘ˆ(๐‘Ÿ,๐‘)โˆถฮฉร—[0,1]โ†’โ„, which satisfies ๐ป๎€บ๐ฟ(๐‘ˆ,๐‘)=(1โˆ’๐‘)(๐‘ˆ)โˆ’๐‘ข0๎€ป[๐ด][]+๐‘(๐‘ˆ)โˆ’๐‘“(๐‘Ÿ)=0,๐‘โˆˆ0,1,๐‘Ÿโˆˆฮฉ,(2.4) or equivalently: ๐ป(๐‘ˆ,๐‘)=๐ฟ(๐‘ˆ)โˆ’๐‘ข0+๐‘๐‘ข0[]+๐‘๐‘(๐‘ˆ)โˆ’๐‘“(๐‘Ÿ)=0,(2.5) where ๐‘โˆˆ[0,1] is an embedding parameter, ๐‘ข0 is an initial approximation for the solution of (2.1). Clearly, (2.4) and (2.5) give ๐ป(๐‘ˆ,0)=๐ฟ(๐‘ˆ)โˆ’๐‘ข0๐ป=0,(๐‘ˆ(๐‘ฅ),1)=๐ด(๐‘ˆ)โˆ’๐‘“(๐‘Ÿ)=0.(2.6) Applying Laplace transform to the both sides of (2.5), we arrive at L๎€ฝ๐ฟ(๐‘ˆ)โˆ’๐‘ข0+๐‘๐‘ข0[๐‘]๎€พ+๐‘(๐‘ˆ)โˆ’๐‘“(๐‘Ÿ)=0.(2.7) Using the differential property of Laplace transform we have ๐‘ ๐‘›L{๐‘ˆ}โˆ’๐‘ ๐‘›โˆ’1๐‘ˆ(0)โˆ’๐‘ ๐‘›โˆ’2๐‘ˆ๎…ž(0)โˆ’โ‹ฏโˆ’๐‘ˆ(๐‘›โˆ’1)๎€ฝ๐‘ข(0)=L0โˆ’๐‘๐‘ข0[]๎€พ+๐‘๐‘(๐‘ˆ)โˆ’๐‘“(๐‘Ÿ)(2.8) or 1L{๐‘ˆ}=๐‘ ๐‘›๎€ฝ๐‘ ๐‘›โˆ’1๐‘ˆ(0)+๐‘ ๐‘›โˆ’2๐‘ˆ๎…ž(0)+โ‹ฏ+๐‘ˆ(๐‘›โˆ’1)๎€ฝ๐‘ข(0)+L0โˆ’๐‘๐‘ข0[].+๐‘๐‘(๐‘ˆ)โˆ’๐‘“(๐‘Ÿ)๎€พ๎€พ(2.9) Finally, applying the inverse Laplace transform to the both sides of (2.9), one can successfully reach to the following: ๐‘ˆ=Lโˆ’1๎‚†1๐‘ ๐‘›๎€ฝ๐‘ ๐‘›โˆ’1๐‘ˆ(0)+๐‘ ๐‘›โˆ’2๐‘ˆ๎…ž(0)+โ‹ฏ+๐‘ˆ(๐‘›โˆ’1)๎€ฝ๐‘ข(0)+L0โˆ’๐‘๐‘ข0[]๎‚‡.+๐‘๐‘(๐‘ˆ)โˆ’๐‘“(๐‘Ÿ)๎€พ๎€พ(2.10) According to the HPM, we can first use the embedding parameter ๐‘ as a small parameter and assume that the solutions of (2.10) can be represented as a power series in ๐‘ as ๐‘ˆ(๐‘ฅ)=โˆž๎“๐‘›=0๐‘๐‘›๐‘ˆ๐‘›.(2.11) Now let us rewrite (2.10) using (2.11) as โˆž๎“๐‘›=0๐‘๐‘›๐‘ˆ๐‘›=Lโˆ’1๎ƒฏ1๐‘ ๐‘›๎ƒฏ๐‘ ๐‘›โˆ’1๐‘ˆ(0)+๐‘ ๐‘›โˆ’2๐‘ˆ๎…ž(0)+โ‹ฏ+๐‘ˆ(๐‘›โˆ’1)๎ƒฏ๐‘ข(0)+L0โˆ’๐‘๐‘ข0๎ƒฌ๐‘๎ƒฉ+๐‘โˆž๎“๐‘›=0๐‘๐‘›๐‘ˆ๐‘›๎ƒช.โˆ’๐‘“(๐‘Ÿ)๎ƒญ๎ƒฐ๎ƒฐ๎ƒฐ(2.12) Therefore, equating the coefficients of ๐‘ with the same power leads to ๐‘0โˆถ๐‘ˆ0=Lโˆ’1๎‚†1๐‘ ๐‘›๎€ท๐‘ ๐‘›โˆ’1๐‘ˆ(0)+๐‘ ๐‘›โˆ’2๐‘ˆ๎…ž(0)+โ‹ฏ+๐‘ˆ(๐‘›โˆ’1)๎€ฝ๐‘ข(0)+L0๎‚‡,๐‘๎€พ๎€ธ1โˆถ๐‘ˆ1=Lโˆ’1๎‚†1๐‘ ๐‘›๎€ทL๎€ฝ๐‘๎€ท๐‘ˆ0๎€ธโˆ’๐‘ข0๎‚‡,๐‘โˆ’๐‘“(๐‘Ÿ)๎€พ๎€ธ2โˆถ๐‘ˆ2=Lโˆ’1๎‚†1๐‘ ๐‘›๎€ทL๎€ฝ๐‘๎€ท๐‘ˆ0,๐‘ˆ1๎‚‡,๐‘๎€ธ๎€พ๎€ธ3โˆถ๐‘ˆ3=Lโˆ’1๎‚†1๐‘ ๐‘›๎€ทL๎€ฝ๐‘๎€ท๐‘ˆ0,U1,๐‘ˆ2๎‚‡,โ‹ฎ๐‘๎€ธ๎€พ๎€ธ๐‘—โˆถ๐‘ˆ๐‘—=Lโˆ’1๎‚†1๐‘ ๐‘›๎€ทL๎€ฝ๐‘๎€ท๐‘ˆ0,๐‘ˆ1,๐‘ˆ2,โ€ฆ,๐‘ˆ๐‘—โˆ’1๎‚‡.โ‹ฎ๎€ธ๎€พ๎€ธ(2.13) Suppose that the initial approximation has the form ๐‘ˆ(0)=๐‘ข0=๐›ผ0,๐‘ˆโ€ฒ(0)=๐›ผ1,โ€ฆ,๐‘ˆ(๐‘›โˆ’1)(0)=๐›ผ๐‘›โˆ’1, therefore the exact solution may be obtained as following: ๐‘ข=lim๐‘โ†’1๐‘ˆ=๐‘ˆ0+๐‘ˆ1+๐‘ˆ2+โ‹ฏ.(2.14)

To show the capability of the method, we apply the NHPM to some examples in Section 4.

3. Analysis of the Method

Consider the nonlinear Fisher (1.1): ๐‘ข๐‘ก=๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐›ผ1โˆ’๐‘ข๐›ฝ๎€ธ(๐‘ขโˆ’๐‘Ž).(3.1)

For solving this equation by applying the new homotopy perturbation method, we construct the following homotopy: ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ทโˆ’๐›ผ1โˆ’๐‘ˆ๐›ฝ๎€ธ๎€ป(๐‘ˆโˆ’๐‘Ž)=0,(3.2) where ๐‘โˆˆ[0,1] is an embedding parameter, ๐‘ข0 is an initial approximation of solution of equation. Clearly, we have from (3.2) ๐ป(๐‘ˆ,0)=๐‘ˆ๐‘กโˆ’๐‘ข0=0,๐ป(๐‘ˆ,1)=๐‘ˆ๐‘กโˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ทโˆ’๐›ผ1โˆ’๐‘ˆ๐›ฝ๎€ธ(๐‘ˆโˆ’๐‘Ž)=0.(3.3) By applying Laplace transform on both sides of (3.2), we have ๎€ฝ๐‘ˆL{๐ป(๐‘ˆ,๐‘)}=L๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ทโˆ’๐›ผ1โˆ’๐‘ˆ๐›ฝ๎€ธ.(๐‘ˆโˆ’๐‘Ž)๎€ป๎€พ(3.4) Using the differential property of Laplace transform we have ๎€ฝ๐‘ข๐‘ L{๐‘ˆ(๐‘ฅ,๐‘ก)}โˆ’๐‘ˆ(๐‘ฅ,0)=L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ทโˆ’๐›ผ1โˆ’๐‘ˆ๐›ฝ๎€ธ(๐‘ˆโˆ’๐‘Ž)๎€ป๎€พ(3.5) or 1L{๐‘ˆ(๐‘ฅ,๐‘ก)}=๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ทโˆ’๐›ผ1โˆ’๐‘ˆ๐›ฝ๎€ธ.(๐‘ˆโˆ’๐‘Ž)๎€ป๎€พ๎€ธ(3.6) By applying inverse Laplace transform on both sides of (3.6), we have ๐‘ˆ(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ทโˆ’๐›ผ1โˆ’๐‘ˆ๐›ฝ๎€ธ๎‚‡.(๐‘ˆโˆ’๐‘Ž)๎€ป๎€พ๎€ธ(3.7) According to the HPM, we use the embedding parameter ๐‘ as a small parameter and assume that the solutions of (3.7) can be represented as a power series in ๐‘ as ๐‘ˆ(๐‘ฅ,๐‘ก)=โˆž๎“๐‘›=0๐‘๐‘›๐‘ˆ๐‘›(๐‘ฅ,๐‘ก).(3.8) Substituting (3.8) into (3.7) and equating the terms with the identical powers of ๐‘, leads to calculate ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก),๐‘—=0,1,2,โ€ฆ๐‘0โˆถ๐‘ˆ0(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎‚‡,๐‘(๐‘ฅ,๐‘ก)๎€พ๎€ธ1โˆถ๐‘ˆ1(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎‚†๐‘ข0๎€ท๐‘ˆ(๐‘ฅ,๐‘ก)โˆ’0๎€ธ๐‘ฅ๐‘ฅ+๐›ผ๐‘Žโˆ’๐›ผ๐‘ˆ0+๐›ผ๐‘ˆ0๐›ฝ+1โˆ’๐›ผ๐‘Ž๐‘ˆ๐›ฝ0,๐‘๎‚‡๎‚‡2โˆถ๐‘ˆ2(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎‚†โˆ’๎€ท๐‘ˆ1๎€ธ๐‘ฅ๐‘ฅโˆ’๐›ผ๐‘ˆ1+(๐›ฝ+1)๐›ผ๐‘ˆ๐›ฝ0๐‘ˆ1โˆ’(๐›ฝ)๐›ผ๐‘Ž๐‘ˆ0๐›ฝโˆ’1๐‘ˆ1,โ‹ฎ๐‘๎‚‡๎‚‡๐‘—โˆถ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก)=Lโˆ’1โŽงโŽชโŽจโŽชโŽฉโˆ’1๐‘ LโŽงโŽชโŽจโŽชโŽฉโˆ’๎€ท๐‘ˆ๐‘—โˆ’1๎€ธ๐‘ฅ๐‘ฅโˆ’๐›ผ๐‘ˆ๐‘—โˆ’1๎“+๐›ผ๐‘˜1+๐‘˜2+โ‹ฏ+๐‘˜๐›ฝ+1=๐‘—โˆ’1๐‘ˆ๐‘˜1๐‘ˆ๐‘˜2โ‹ฏ๐‘ˆ๐‘˜๐›ฝ+1๎“โˆ’๐‘Ž๐›ผ๐‘˜1+๐‘˜2+โ‹ฏ+๐‘˜๐›ฝ=๐‘—โˆ’1๐‘ˆ๐‘˜1๐‘ˆ๐‘˜2โ‹ฏ๐‘ˆ๐‘˜๐›ฝโŽซโŽชโŽฌโŽชโŽญโŽซโŽชโŽฌโŽชโŽญ.(3.9) Suppose that the initial approximation has the form ๐‘ˆ(๐‘ฅ,0)=๐‘ข0(๐‘ฅ,๐‘ก), therefore the exact solution may be obtained as following: ๐‘ข(๐‘‹,๐‘ก)=lim๐‘โ†’1๐‘ˆ(๐‘ฅ,๐‘ก)=๐‘ˆ0(๐‘ฅ,๐‘ก)+๐‘ˆ1(๐‘ฅ,๐‘ก)+๐‘ˆ2(๐‘ฅ,๐‘ก)+โ‹ฏ.(3.10)

4. Examples

Example 4.1. Consider the following Fisher equation for ๐›ผ=๐›ฝ=1 and ๐‘Ž=0 taken from [29] such that ๐‘ข๐‘ก=๐‘ข๐‘ฅ๐‘ฅ+๐‘ข(1โˆ’๐‘ข)(4.1) subject to a constant initial condition ๐‘ข(๐‘ฅ,0)=๐œ†.(4.2) To solve (4.2) by the LTNHPM, we construct the following homotopy: ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘ก๎€บโˆ’๐œ†+๐‘๐œ†โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ปโˆ’๐‘ˆ(1โˆ’๐‘ˆ)=0(4.3) or ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘ก๎€บโˆ’๐œ†+๐‘๐œ†โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ2๎€ป=0.(4.4) Applying Laplace transform on both sides of (4.4), we have ๎€ฝ๐‘ˆL{๐ป(๐‘ˆ,๐‘)}=L๐‘ก๎€บโˆ’๐œ†+๐‘๐œ†โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ2.๎€ป๎€พ(4.5) Using the differential property of Laplace transform we have ๎€ฝ๎€บ๐‘ L{๐‘ˆ(๐‘ฅ,๐‘ก)}โˆ’๐œ†=L๐œ†โˆ’๐‘๐œ†โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ2๎€ป๎€พ(4.6) or 1L{๐‘ˆ(๐‘ฅ,๐‘ก)}=๐‘ ๎€ท๎€ฝ๎€บ๐œ†+L๐œ†โˆ’๐‘๐œ†โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ2.๎€ป๎€พ๎€ธ(4.7) By applying inverse Laplace transform on both sides of (4.7), we have ๐‘ˆ(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎€ท๎€ฝ๎€บ๐œ†+L๐œ†โˆ’๐‘๐œ†โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ2๎‚‡.๎€ป๎€พ๎€ธ(4.8) Suppose the solution of (4.8) to have the following form: ๐‘ˆ(๐‘ฅ,๐‘ก)=โˆž๎“๐‘›=0๐‘๐‘›๐‘ˆ๐‘›(๐‘ฅ,๐‘ก),(4.9) where ๐‘ˆ๐‘–(๐‘ฅ,๐‘ก) are unknown functions which should be determined. Substituting (4.9) into (4.8), and equating the terms with the identical powers of ๐‘, leads to calculate ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก),๐‘—=0,1,2,โ€ฆ๐‘0โˆถ๐‘ˆ0(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎‚‡,๐‘(๐œ†+L{๐œ†})1โˆถ๐‘ˆ1(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎€ฝ๎€ท๐‘ˆ๐œ†โˆ’0๎€ธ๐‘ฅ๐‘ฅโˆ’๐‘ˆ0+๐‘ˆ20๎€พ๎‚‡,๐‘2โˆถ๐‘ˆ2(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎€ฝโˆ’๎€ท๐‘ˆ1๎€ธ๐‘ฅ๐‘ฅโˆ’๐‘ˆ1+2๐‘ˆ0๐‘ˆ1๎€พ๎‚‡,โ‹ฎ๐‘๐‘—โˆถ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก)=Lโˆ’1๎ƒฏโˆ’1๐‘ L๎ƒฏโˆ’๎€ท๐‘ˆ๐‘—โˆ’1๎€ธ๐‘ฅ๐‘ฅโˆ’๐‘ˆ๐‘—โˆ’1+๎ƒฉ๐‘—โˆ’1๎“๐‘˜=0๐‘ˆ๐‘˜๐‘ˆ๐‘˜โˆ’๐‘—โˆ’1.๎ƒช๎ƒฐ๎ƒฐ(4.10) Assuming ๐‘ข0(๐‘ฅ,๐‘ก)=๐‘ˆ(๐‘ฅ,0)=๐œ†, and solving the above equation for ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก),๐‘—=0,1,โ€ฆ leads to the result ๐‘ˆ0๐‘ˆ(๐‘ฅ,๐‘ก)=๐œ†(1+๐‘ก),11(๐‘ฅ,๐‘ก)=โˆ’3๐œ†2๐‘ก3+๎‚€12๐œ†โˆ’๐œ†2๎‚๐‘ก2โˆ’๐‘ก๐œ†2,๐‘ˆ2(2๐‘ฅ,๐‘ก)=๐œ†153๐‘ก5+๎‚€โˆ’13๐œ†2+23๐œ†3๎‚๐‘ก4+๎‚€164๐œ†+3๐œ†3โˆ’23๐œ†2๎‚๐‘ก3+๎‚€๐œ†3โˆ’12๐œ†2๎‚๐‘ก2,๐‘ˆ3(๐‘ฅ,๐‘ก)=โˆ’17๐œ†3154๐‘ก7+๎‚€โˆ’17๐œ†454+17๐œ†903๎‚๐‘ก6+๎‚€11๐œ†153โˆ’17๐œ†154โˆ’11๐œ†602๎‚๐‘ก5+๎‚€76๐œ†3+1524๐œ†โˆ’3๐œ†4โˆ’14๐œ†2๎‚๐‘ก4+๎‚€23๐œ†3โˆ’16๐œ†2โˆ’๐œ†4๎‚๐‘ก3,๐‘ˆ4(๐‘ฅ,๐‘ก)=62๐œ†28355๐‘ก9+๎‚€โˆ’31๐œ†3154+62๐œ†3155๎‚๐‘ก8+๎‚€17๐œ†3+248๐œ†3155โˆ’47๐œ†4๎‚๐‘ก7+๎‚€โˆ’43๐œ†304โˆ’13๐œ†1802+77๐œ†455+13๐œ†303๎‚๐‘ก6+1๐œ†๎€ท120โˆ’208๐œ†3+68๐œ†2+240๐œ†4๎€ธ๐‘กโˆ’8๐œ†+15+1๐œ†242๎€ท(2๐œ†โˆ’1)12๐œ†2๎€ธ๐‘กโˆ’4๐œ†+14.โ‹ฎ(4.11) Therefore using some algebra with the aid of symbolic computation tool, we gain the solution of (4.1) as ๐‘ข(๐‘ฅ,๐‘ก)=๐‘ˆ0(๐‘ฅ,๐‘ก)+๐‘ˆ1(๐‘ฅ,๐‘ก)+๐‘ˆ2(๐‘ฅ,๐‘ก)+๐‘ˆ3๐‘ก+(๐‘ฅ,๐‘ก)+โ‹ฏ=๐œ†+๐œ†(1โˆ’๐œ†)๐‘ก+๐œ†(1โˆ’๐œ†)(1โˆ’2๐œ†)2๎€ท2!+๐œ†(1โˆ’๐œ†)1โˆ’6๐œ†+6๐œ†2๎€ธ๐‘ก3=3!+โ‹ฏ๐œ†๐‘’๐‘ก1โˆ’๐œ†+๐œ†๐‘’๐‘ก,(4.12) which is exact solution of problem.

Example 4.2. Consider the following Fisher equation for ๐›ผ=6,๐›ฝ=1,๐‘Ž=0, [29] such that ๐‘ข๐‘ก=๐‘ข๐‘ฅ๐‘ฅ+6๐‘ข(1โˆ’๐‘ข)(4.13) subject to a initial condition: ๐‘ข(๐‘ฅ,0)=(1+e๐‘ฅ)โˆ’2.(4.14) To solve (4.13) by the LTNHPM, we construct the following homotopy: ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ปโˆ’6๐‘ˆ(1โˆ’๐‘ˆ)=0(4.15) or ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’6๐‘ˆ+6๐‘ˆ2๎€ป=0.(4.16) Applying Laplace transform on both sides of (4.16), we have ๎€ฝ๐‘ˆL{๐ป(๐‘ˆ,๐‘)}=L๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’6๐‘ˆ+6๐‘ˆ2.๎€ป๎€พ(4.17) Using the differential property of Laplace transform we have ๎€ฝ๐‘ข๐‘ L{๐‘ˆ(๐‘ฅ,๐‘ก)}โˆ’๐‘ˆ(๐‘ฅ,0)=L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’6๐‘ˆ+6๐‘ˆ2๎€ป๎€พ(4.18) or 1L{๐‘ˆ(๐‘ฅ,๐‘ก)}=๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’6๐‘ˆ+6๐‘ˆ2.๎€ป๎€พ๎€ธ(4.19) By applying inverse Laplace transform on both sides of (4.19), we have ๐‘ˆ(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎€ท(1+e๐‘ฅ)โˆ’2๎€ฝ๐‘ข+L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’6๐‘ˆ+6๐‘ˆ2๎‚‡.๎€ป๎€พ๎€ธ(4.20) Suppose the solution of (4.20) to have the following form: ๐‘ˆ(๐‘ฅ,๐‘ก)=โˆž๎“๐‘›=0๐‘๐‘›๐‘ˆ๐‘›(๐‘ฅ,๐‘ก),(4.21) where ๐‘ˆ๐‘–(๐‘ฅ,๐‘ก) are unknown functions which should be determined. Substituting (4.21) into (4.20), and equating the terms with the identical powers of ๐‘, leads to calculate ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก),๐‘—=0,1,2,โ€ฆ๐‘0โˆถ๐‘ˆ0(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎‚‡,๐‘(๐‘ฅ,๐‘ก)๎€พ๎€ธ1โˆถ๐‘ˆ1(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎€ฝ๐‘ข0๎€ท๐‘ˆ(๐‘ฅ,๐‘ก)โˆ’0๎€ธ๐‘ฅ๐‘ฅโˆ’6๐‘ˆ0+6๐‘ˆ20๎€พ๎‚‡,๐‘2โˆถ๐‘ˆ2(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎€ฝโˆ’๎€ท๐‘ˆ1๎€ธ๐‘ฅ๐‘ฅโˆ’6๐‘ˆ1+12๐‘ˆ0๐‘ˆ1๎€พ๎‚‡,โ‹ฎ๐‘๐‘—โˆถ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก)=Lโˆ’1๎ƒฏโˆ’1๐‘ L๎ƒฏโˆ’๎€ท๐‘ˆ๐‘—โˆ’1๎€ธ๐‘ฅ๐‘ฅโˆ’6๐‘ˆ๐‘—โˆ’1๎ƒฉ+6๐‘—โˆ’1๎“๐‘˜=0๐‘ˆ๐‘˜๐‘ˆ๐‘˜โˆ’๐‘—โˆ’1.๎ƒช๎ƒฐ๎ƒฐ(4.22) Assuming ๐‘ข0(๐‘ฅ,๐‘ก)=๐‘ˆ(๐‘ฅ,0)=๐œ†, and solving the above equation for ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก),๐‘—=0,1,โ€ฆ leads to the result ๐‘ˆ0(๐‘ฅ,๐‘ก)=1+๐‘ก(1+e๐‘ฅ)2,๐‘ˆ1๐‘ก(๐‘ฅ,๐‘ก)=โˆ’23(1+e๐‘ฅ)4+๎€ทโˆ’3+5e2๐‘ฅ+5e๐‘ฅ๎€ธ๐‘ก2(1+e๐‘ฅ)4+๎€ทโˆ’1+9e2๐‘ฅ+8e๐‘ฅ๎€ธ๐‘ก(1+e๐‘ฅ)4,๐‘ˆ2(๐‘ฅ,๐‘ก)=245๐‘ก5(1+e๐‘ฅ)6+1๎€ท15180โˆ’390e2๐‘ฅโˆ’285e๐‘ฅ๎€ธ๐‘ก4(1+e๐‘ฅ)6+1๎€ท15250e4๐‘ฅโˆ’870e2๐‘ฅ+375e3๐‘ฅโˆ’725e๐‘ฅ๎€ธ๐‘ก+1503(1+e๐‘ฅ)6+1๎€ท1545+675e4๐‘ฅ+900e3๐‘ฅโˆ’360e๐‘ฅโˆ’180e2๐‘ฅ๎€ธ๐‘ก2(1+e๐‘ฅ)6,๐‘ˆ3(๐‘ฅ,๐‘ก)=โˆ’408๐‘ก357(1+e๐‘ฅ)8+1๎€ท420โˆ’17136+44352e2๐‘ฅ+26376e๐‘ฅ๎€ธ๐‘ก6(1+e๐‘ฅ)8+1๎€ท420โˆ’22680โˆ’78036e3๐‘ฅ+132216e2๐‘ฅโˆ’77448e4๐‘ฅ+93996e๐‘ฅ๎€ธ๐‘ก5(1+e๐‘ฅ)8+1๎€ท420โˆ’261380e4๐‘ฅ+21875e5๐‘ฅโˆ’271250e3๐‘ฅ+17500e6๐‘ฅ+81620e2๐‘ฅ+98455e๐‘ฅ๎€ธ๐‘กโˆ’138604(1+e๐‘ฅ)8+1๎€ท420โˆ’3360+63000e6๐‘ฅ+32760e๐‘ฅ+63000e5๐‘ฅโˆ’183120e3๐‘ฅโˆ’142800e4๐‘ฅโˆ’4200e2๐‘ฅ๎€ธ๐‘ก3(1+e๐‘ฅ)8.โ‹ฎ(4.23) Therefore using some algebra with the aid of symbolic computation tool, we gain the solution of (4.13) as ๐‘ข(๐‘ฅ,๐‘ก)=๐‘ˆ0(๐‘ฅ,๐‘ก)+๐‘ˆ1(๐‘ฅ,๐‘ก)+๐‘ˆ2(๐‘ฅ,๐‘ก)+๐‘ˆ3=1(๐‘ฅ,๐‘ก)+โ‹ฏ(1+๐‘’๐‘ฅ)2+10๐‘’๐‘ฅ(1+๐‘’๐‘ฅ)3๐‘ก+25๐‘’๐‘ฅ(โˆ’1+2๐‘’๐‘ฅ)(1+๐‘’๐‘ฅ)4๐‘ก2+โˆ’125๐‘’๐‘ฅ๎€ทโˆ’1+7๐‘’๐‘ฅโˆ’4๐‘’2๐‘ฅ๎€ธ3(1+๐‘’๐‘ฅ)5๐‘ก3=1+โ‹ฏ๎€ท1+๐‘’๐‘ฅโˆ’5๐‘ก๎€ธ2,(4.24) which is exact solution of problem.

Example 4.3. Consider the following generalized Fisher equation for ๐›ผ=1,๐›ฝ=6 and ๐‘Ž=0 taken from [29] such that ๐‘ข๐‘ก=๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐‘ข1โˆ’๐‘ข6๎€ธ(4.25) subject to a constant initial condition: 1๐‘ข(๐‘ฅ,0)=3โˆš1+e(3/2)๐‘ฅ.(4.26) To solve (4.26) by the LTNHPM, we construct the following homotopy: ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ทโˆ’๐‘ˆ1โˆ’๐‘ˆ6๎€ธ๎€ป=0(4.27) or ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ7๎€ป=0.(4.28) Applying Laplace transform on both sides of (4.28), we have L๎€ฝ๐‘ˆ{๐ป(๐‘ˆ,๐‘)}=L๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ7๎€ป๎€พ.(4.29) Using the differential property of Laplace transform we have ๎€ฝ๐‘ข๐‘ L{๐‘ˆ(๐‘ฅ,๐‘ก)}โˆ’๐‘ˆ(๐‘ฅ,0)=L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ7๎€ป๎€พ(4.30) or 1L{๐‘ˆ(๐‘ฅ,๐‘ก)}=๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ7.๎€ป๎€พ๎€ธ(4.31) By applying inverse Laplace transform on both sides of (4.31), we have ๐‘ˆ(๐‘ฅ,๐‘ก)=Lโˆ’1๎ƒฏ1๐‘ ๎ƒฉ13โˆš1+e(3/2)๐‘ฅ๎€ฝ๐‘ข+L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ7๎€ป๎€พ๎ƒช๎ƒฐ.(4.32) Suppose the solution of (4.32) to have the following form:๐‘ˆ(๐‘ฅ,๐‘ก)=โˆž๎“๐‘›=0๐‘๐‘›๐‘ˆ๐‘›(๐‘ฅ,๐‘ก),(4.33) where ๐‘ˆ๐‘–(๐‘ฅ,๐‘ก) are unknown functions which should be determined. Substituting (4.33) into (4.32), and equating the terms with the identical powers of ๐‘, leads to calculate ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก),๐‘—=0,1,2,โ€ฆ๐‘0โˆถ๐‘ˆ0(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎‚‡,๐‘(๐‘ฅ,๐‘ก)๎€พ๎€ธ1โˆถ๐‘ˆ1(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎€ฝ๐‘ข0๎€ท๐‘ˆ(๐‘ฅ,๐‘ก)โˆ’0๎€ธ๐‘ฅ๐‘ฅโˆ’๐‘ˆ0+๐‘ˆ70๎€พ๎‚‡,๐‘2โˆถ๐‘ˆ2(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎€ฝโˆ’๎€ท๐‘ˆ1๎€ธ๐‘ฅ๐‘ฅโˆ’๐‘ˆ1+7๐‘ˆ60๐‘ˆ1๎€พ๎‚‡,โ‹ฎ๐‘๐‘—โˆถ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก)=Lโˆ’1โŽงโŽชโŽจโŽชโŽฉโˆ’1๐‘ LโŽงโŽชโŽจโŽชโŽฉโˆ’๎€ท๐‘ˆ๐‘—โˆ’1๎€ธ๐‘ฅ๐‘ฅโˆ’๐‘ˆ๐‘—โˆ’1+โŽ›โŽœโŽœโŽ๎“๐‘˜1+๐‘˜2+โ‹ฏ+๐‘˜7=๐‘—โˆ’1๐‘ˆ๐‘˜1๐‘ˆ๐‘˜2โ‹ฏ๐‘ˆ๐‘˜7โŽžโŽŸโŽŸโŽ โŽซโŽชโŽฌโŽชโŽญโŽซโŽชโŽฌโŽชโŽญ.(4.34) Assuming ๐‘ข0(๐‘ฅ,๐‘ก)=๐‘ˆ(๐‘ฅ,0)=1/3โˆš1+e(3/2)๐‘ฅ, and solving the above equation for ๐‘ˆj(๐‘ฅ,๐‘ก),๐‘—=0,1,2,โ€ฆ leads to the result ๐‘ˆ0(๐‘ฅ,๐‘ก)=1+๐‘ก3โˆš1+e(3/2)๐‘ฅ,๐‘ˆ1=(๐‘ฅ,๐‘ก)โˆ’๐‘ก8โˆ’8๐‘ก7โˆ’28๐‘ก6โˆ’56๐‘ก5โˆ’70๐‘ก4โˆ’56๐‘ก3+๎€ท5e(3/2)๐‘ฅ+5e3๐‘ฅ๎€ธ๐‘กโˆ’242+๎€ทโˆ’8โˆ’6e(3/2)๐‘ฅ+2e3๐‘ฅ๎€ธ๐‘ก8๎€ท1+e(3/2)๐‘ฅ๎€ธ7/3,๐‘ˆ21(๐‘ฅ,๐‘ก)=๎€ท1+e(3/2)๐‘ฅ๎€ธ13/3ร—๎‚€7๐‘ก12015+78๐‘ก14+498๐‘ก13+637๐‘ก2412+1+โ‹ฏ๎€ท1440โˆ’28800+25995e3๐‘ฅโˆ’18675e(3/2)๐‘ฅโˆ’375e6๐‘ฅ+375e(9/2)๐‘ฅ๎€ธ๐‘ก3+1๎€ท1440โˆ’4320โˆ’225e6๐‘ฅ+4005e3๐‘ฅโˆ’4365e(3/2)๐‘ฅ+3825e(9/2)๐‘ฅ๎€ธ๐‘ก2๎‚,๐‘ˆ31(๐‘ฅ,๐‘ก)=๎€ท1+e(3/2)๐‘ฅ๎€ธ19/3ร—๎€ทโˆ’8484๐‘ก22โˆ’186648๐‘ก21โˆ’1959804๐‘ก20โˆ’13065360๐‘ก19โˆ’62060460๐‘ก18๎€ท+โ‹ฏ+โˆ’30222720โˆ’35272215e(3/2)๐‘ฅ+20625e9๐‘ฅโˆ’15482610e6๐‘ฅ+44573265e3๐‘ฅ+64407750e(9/2)๐‘ฅโˆ’309375e(15/2)๐‘ฅ๎€ธ๐‘ก4+๎€ทโˆ’3294720โˆ’5585580e(3/2)๐‘ฅ+2950200e6๐‘ฅ+10880760e(9/2)๐‘ฅ+4319700e3๐‘ฅโˆ’1303500e(15/2)๐‘ฅ+16500e9๐‘ฅ๎€ธ๐‘ก3๎€ธ.โ‹ฎ(4.35) Therefore using some algebra with the aid of symbolic computation tool, we gain the solution of (4.25) as ๐‘ข(๐‘ฅ,๐‘ก)=๐‘ˆ0(๐‘ฅ,๐‘ก)+๐‘ˆ1(๐‘ฅ,๐‘ก)+๐‘ˆ2(๐‘ฅ,๐‘ก)+๐‘ˆ3=1(๐‘ฅ,๐‘ก)+โ‹ฏ3โˆš1+e(3/2)๐‘ฅ+5๐‘’(3/2)๐‘ฅ4๎‚€3โˆš1+e(3/2)๐‘ฅ๎‚4๐‘ก+25๐‘’(3/2)๐‘ฅ๎€ท๐‘’(3/2)๐‘ฅ๎€ธโˆ’3๎‚€323โˆš1+e(3/2)๐‘ฅ๎‚7๐‘ก2=+โ‹ฏ3โˆš[],0.5+0.5tanh0.75(๐‘ฅโˆ’2.5๐‘ก)(4.36) which is exact solution of problem.

Example 4.4. Consider the following nonlinear diffusion equation of the Fisher type for ๐›ผ=๐›ฝ=1 taken from [29] such that ๐‘ข๐‘ก=๐‘ข๐‘ฅ๐‘ฅ+๐‘ข(1โˆ’๐‘ข)(๐‘ขโˆ’๐‘Ž),0<๐‘Ž<1(4.37) subject to an initial condition: 1๐‘ข(๐‘ฅ,0)=1+eโˆšโˆ’๐‘ฅ/2.(4.38) To solve (4.38) by the LTNHPM, we construct the following homotopy: ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ๎€ปโˆ’๐‘ˆ(1โˆ’๐‘ˆ)(๐‘ˆโˆ’๐‘Ž)=0(4.39) or ๐ป(๐‘ˆ,๐‘)=๐‘ˆ๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ+๐‘ˆ3+๐‘Ž๐‘ˆโˆ’(1+๐‘Ž)๐‘ˆ2๎€ป=0.(4.40) Applying Laplace transform on both sides of (4.40), we have ๎€ฝ๐‘ˆL{๐ป(๐‘ˆ,๐‘)}=L๐‘กโˆ’๐‘ข0๎€บ๐‘ข+๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ+๐‘ˆ3+๐‘Ž๐‘ˆโˆ’(1+๐‘Ž)๐‘ˆ2.๎€ป๎€พ(4.41) Using the differential property of Laplace transform we have ๎€ฝ๐‘ข๐‘ L{๐‘ˆ(๐‘ฅ,๐‘ก)}โˆ’๐‘ˆ(๐‘ฅ,0)=L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ+๐‘ˆ3+๐‘Ž๐‘ˆโˆ’(1+๐‘Ž)๐‘ˆ2๎€ป๎€พ(4.42) or 1L{๐‘ˆ(๐‘ฅ,๐‘ก)}=๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅโˆ’๐‘ˆ+๐‘ˆ2.๎€ป๎€พ๎€ธ(4.43) By applying inverse Laplace transform on both sides of (4.43), we have ๐‘ˆ(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎€ท๎€ฝ๐‘ข๐œ†+L0๎€บ๐‘ขโˆ’๐‘0โˆ’๐‘ˆ๐‘ฅ๐‘ฅ+๐‘ˆ3+๐‘Ž๐‘ˆโˆ’(1+๐‘Ž)๐‘ˆ2๎‚‡.๎€ป๎€พ๎€ธ(4.44) Suppose the solution of (4.44) to have the following form: ๐‘ˆ(๐‘ฅ,๐‘ก)=โˆž๎“๐‘›=0๐‘๐‘›๐‘ˆ๐‘›(๐‘ฅ,๐‘ก),(4.45) where ๐‘ˆ๐‘–(๐‘ฅ,๐‘ก) are unknown functions which should be determined. Substituting (4.45) into (4.43), and equating the terms with the identical powers of ๐‘, leads to calculate ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก),๐‘—=0,1,2,โ€ฆ๐‘0โˆถ๐‘ˆ0(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†1๐‘ ๎€ท๎€ฝ๐‘ข๐‘ˆ(๐‘ฅ,0)+L0๎‚‡,๐‘(๐‘ฅ,๐‘ก)๎€พ๎€ธ1โˆถ๐‘ˆ1(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎€ฝ๐‘ข0๎€ท๐‘ˆ(๐‘ฅ,๐‘ก)โˆ’0๎€ธ๐‘ฅ๐‘ฅ+๐‘ˆ30+๐‘Ž๐‘ˆ0โˆ’(1+๐‘Ž)๐‘ˆ20๎€พ๎‚‡,๐‘2โˆถ๐‘ˆ2(๐‘ฅ,๐‘ก)=Lโˆ’1๎‚†โˆ’1๐‘ L๎€ฝโˆ’๎€ท๐‘ˆ1๎€ธ๐‘ฅ๐‘ฅ+3๐‘ˆ20๐‘ˆ1+๐‘Ž๐‘ˆ1โˆ’2(1+๐‘Ž)๐‘ˆ0๐‘ˆ1๎€พ๎‚‡,โ‹ฎ๐‘๐‘—โˆถ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก)=Lโˆ’1๎ƒฏโˆ’1๐‘ L๎ƒฏโˆ’๎€ท๐‘ˆ๐‘—โˆ’1๎€ธ๐‘ฅ๐‘ฅ+๐‘Ž๐‘ˆ๐‘—โˆ’1+๎ƒฉ๐‘—โˆ’1๎“๐‘˜๐‘˜=0๎“๐‘–=0๐‘ˆ๐‘—โˆ’๐‘˜โˆ’1๐‘ˆ๐‘–๐‘ˆ๐‘˜โˆ’๐‘–๎ƒชโˆ’(1+๐‘Ž)๐‘—โˆ’1๎“๐‘˜=0๐‘ˆ๐‘˜๐‘ˆ๐‘—โˆ’๐‘˜โˆ’1.๎ƒฐ๎ƒฐ(4.46) Assuming ๐‘ข0(๐‘ฅ,๐‘ก)=๐‘ˆ(๐‘ฅ,0)=1/(1+eโˆšโˆ’๐‘ฅ/2), and solving the above equation for ๐‘ˆ๐‘—(๐‘ฅ,๐‘ก),๐‘—=0,1,2,โ€ฆ leads to the result ๐‘ˆ0(๐‘ฅ,๐‘ก)=1+๐‘ก1+eโˆšโˆ’๐‘ฅ/2,๐‘ˆ11(๐‘ฅ,๐‘ก)=๎‚€121+eโˆšโˆ’๐‘ฅ/2๎‚3๎‚€โˆ’3๐‘ก4+๎‚€4eeโˆšโˆ’๐‘ฅ/2โˆ’8+4๐‘Ž+4eeโˆšโˆ’๐‘ฅ/2๐‘Ž๎‚๐‘ก3+๎‚€3eโˆ’โˆš2๐‘ฅโˆ’6+9eeโˆšโˆ’๐‘ฅ/2โˆ’6eโˆ’โˆš2๐‘ฅ๎‚๐‘ก๐‘Ž+6๐‘Ž2+๎‚€โˆ’18eeโˆšโˆ’๐‘ฅ/2โˆ’12eโˆ’โˆš2๐‘ฅ๐‘Žโˆ’12โˆ’12eeโˆšโˆ’๐‘ฅ/2๐‘Žโˆ’6eโˆ’โˆš2๐‘ฅ๎‚๐‘ก๎‚,๐‘ˆ2(1๐‘ฅ,๐‘ก)=๎‚€8401+eโˆšโˆ’๐‘ฅ/2๎‚5ร—๎‚ƒ90๐‘ก7+๎‚€โˆ’210eโˆšโˆ’๐‘ฅ/2โˆ’210๐‘Žโˆ’210eโˆšโˆ’๐‘ฅ/2๎‚๐‘ก๐‘Ž+4206+๎‚€โˆ’203eโˆ’โˆš2๐‘ฅ+112eโˆ’โˆš2๐‘ฅ๐‘Ž2+518eโˆ’โˆš2๐‘ฅ๐‘Žโˆ’742๐‘Ž+112๐‘Ž2+742โˆ’847eโˆšโˆ’๐‘ฅ/2+224eโˆšโˆ’๐‘ฅ/2๐‘Ž2โˆ’224eโˆšโˆ’๐‘ฅ/2๐‘Ž๎‚๐‘ก5๎‚„,๐‘ˆ+โ‹ฏ31(๐‘ฅ,๐‘ก)=๎‚€201601+eโˆšโˆ’๐‘ฅ/2๎‚7๎‚ƒ1026๐‘ก10+๎‚€โˆ’3420๐‘Žโˆ’3420eโˆšโˆ’1/22๐‘ฅโˆ’3420eโˆšโˆ’1/22๐‘ฅ๎‚๐‘ก๐‘Ž+68409+๎‚€3528eโˆ’โˆš2๐‘ฅ๐‘Ž2+3528๐‘Ž2โˆ’20403eโˆšโˆ’๐‘ฅ/2+18918โˆ’7056eโˆšโˆ’๐‘ฅ/2๐‘Ž+11862eโˆ’โˆš2๐‘ฅ๐‘Ž+7056eโˆšโˆ’๐‘ฅ/2๐‘Ž2โˆ’3627eโˆ’โˆš2๐‘ฅ๎‚๐‘กโˆ’18918๐‘Ž8๎‚„.โ‹ฎ+โ‹ฏ(4.47) Therefore using some algebra with the aid of symbolic computation tool, we gain the solution of (4.37) as ๐‘ข(๐‘ฅ,๐‘ก)=๐‘ˆ0(๐‘ฅ,๐‘ก)+๐‘ˆ1(๐‘ฅ,๐‘ก)+๐‘ˆ2(๐‘ฅ,๐‘ก)+๐‘ˆ3=1(๐‘ฅ,๐‘ก)+โ‹ฏ1+eโˆšโˆ’๐‘ฅ/2โˆ’eโˆšโˆ’๐‘ฅ/2(โˆ’1+2๐‘Ž)2๎‚€1+eโˆšโˆ’๐‘ฅ/2๎‚2+eโˆšโˆ’๐‘ฅ/2๎‚€eโˆšโˆ’๐‘ฅ/2โˆ’4eโˆšโˆ’๐‘ฅ/2๐‘Ž+4eโˆšโˆ’๐‘ฅ/2๐‘Ž2โˆ’1+4๐‘Žโˆ’4๐‘Ž2๎‚8๎‚€1+eโˆšโˆ’๐‘ฅ/2๎‚3=1+โ‹ฏ1+๐‘’โˆš(โˆ’๐‘ฅโˆ’โˆš2(0.5โˆ’๐‘Ž)๐‘ก)/2,(4.48) which is exact solution of problem.

5. Summary and Conclusion

In the present work, we proposed a combination of Laplace transform method and homotopy perturbation method to solve Fisher-type Equations. This method is simple and finds exact solution of the equations using the initial condition only. This method unlike the most numerical techniques provides a closed form of the solution. The new method developed in the current paper was tested on several examples. The obtained results show that this approach does not require specific algorithms and complex calculations, such as, ADM or construction of correction functionals using general Lagrange multipliers, such as, VIM and is much easier and more convenient than ADM and VIM, and this approach can solve the problem very fast and effectively.

Acknowledgment

The authors are grateful to the reviewers for their comments and useful suggestions which improved the presentation and value of the paper.