Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 637209, 15 pages
http://dx.doi.org/10.1155/2012/637209
Research Article

The Second-Order Born Approximation in Diffuse Optical Tomography

Department of Mathematics, Dongguk University, Seoul 100715, Republic of Korea

Received 21 October 2011; Accepted 8 December 2011

Academic Editor: Chang-Hwan Im

Copyright © 2012 Kiwoon Kwon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Problems, vol. 25, pp. 1–59, 2009. View at Google Scholar · View at Zentralblatt MATH
  2. V. Isakov, “On uniqueness in the inverse transmission scattering problem,” Communications in Partial Differential Equations, vol. 15, no. 11, pp. 1565–1587, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. K. Kwon, “Identification of anisotropic anomalous region in inverse problems,” Inverse Problems, vol. 20, no. 4, pp. 1117–1136, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. K. Kwon and D. Sheen, “Anisotropic inverse conductivity and scattering problems,” Inverse Problems, vol. 18, no. 3, pp. 745–756, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. J. Sylvester and G. Uhlmann, “A global uniqueness theorem for an inverse boundary value problem,” Annals of Mathematics, vol. 125, no. 1, pp. 153–169, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. H. Kang, K. Kwon, and K. Yun, “Recovery of an inhomogeneity in an elliptic equation,” Inverse Problems, vol. 17, no. 1, pp. 25–44, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. K. Kwon and B. Yazıcı, “Born expansion and Fréchet derivatives in nonlinear diffuse optical tomography,” Computers & Mathematics with Applications, vol. 59, no. 11, pp. 3377–3397, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier-Laplace inversion formulas,” Journal of the Optical Society of America A, vol. 18, no. 6, pp. 1336–1347, 2001. View at Publisher · View at Google Scholar
  9. G. Murat, K. Kwon, B. Yazici, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging: I,” Inverse Problems, vol. 23, no. 3, pp. 1115–1133, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. G. Murat, K. Kwon, B. Yazici, E. Giladi, and X. Intes, “Effect of discretization error and adaptive mesh generation in diffuse optical absorption imaging. II,” Inverse Problems, vol. 23, no. 3, pp. 1135–1160, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. K. Kwon, B. Yazıcı, and M. Guven, “Two-level domain decomposition methods for diffuse optical tomography,” Inverse Problems, vol. 22, no. 5, pp. 1533–1559, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems, vol. 15, no. 2, pp. R41–R93, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. C. Miranda, Partial Differential Equations of Elliptic Type, Springer, New York, NY, USA, 1970.