Abstract

Let T be a time scale. We study the existence of positive solutions for the nonlinear four-point singular boundary value problem with 𝑝-Laplacian dynamic delay differential equations on time scales, subject to some boundary conditions. By using the fixed-point index theory, the existence of positive solution and many positive solutions for nonlinear four-point singular boundary value problem with 𝑝-Laplacian operator is obtained.

1. Introduction

The study of dynamic equations on time scales goes back to its founder Hilger [1] and is a new area of still fairly theoretical exploration in mathematics. Boundary value problems for delay differential equations arise in a variety of areas of applied mathematics, physics, and variational problems of control theory (see [2, 3]). In recent years, many authors have begun to pay attention to the study of boundary-value problems or with 𝑝-Laplacian equations or with 𝑝-Laplacian dynamic equations on time scales (see [4–14] and the references therein).

In [7], Sun and Li considered the existence of positive solution of the following dynamic equations on time scales:π‘’Ξ”βˆ‡(𝑑)+π‘Ž(𝑑)𝑓(𝑑,𝑒(𝑑))=0,π‘‘βˆˆ(0,𝑇),(1.1)𝛽𝑒(0)βˆ’π›Ύπ‘’Ξ”(0)=0,𝛼𝑒(πœ‚)=𝑒(𝑇),(1.2) where 𝛽,𝛾β‰₯0,𝛽+𝛾>0,πœ‚βˆˆ(0,𝜌(𝑇)),0<𝛼<𝑇/πœ‚. They obtained the existence of single and multiple positive solutions of the problem (1.1) and (1.2) by using fixed-point theorem and Leggett-Williams fixed-point theorem (see [15]), respectively.

In [4], Anderson discussed the following dynamic equation on time scales:π‘’Ξ”βˆ‡(𝑑)+π‘Ž(𝑑)𝑓(𝑒(𝑑))=0,π‘‘βˆˆ(0,𝑇),𝑒(0)=0,𝛼𝑒(πœ‚)=𝑒(𝑇).(1.3) He obtained some results for the existence of one positive solution of the problem (1.3) based on the limits 𝑓0=lim𝑒→0+𝑓(𝑒)/𝑒 and π‘“βˆž=limπ‘’β†’βˆžπ‘“(𝑒)/𝑒.

In [5], Kaufmann studied the problem (1.3) and obtained the existence results of at least two positives solutions.

In [14], Wang et al. discussed the following dynamic equation on time scales by using Avery-Peterson fixed theorem (see [14]):ξ€·πœ™π‘ξ€·π‘’ξ…žξ€Έξ€Έξ…žξ€·+π‘ž(𝑑)𝑓𝑑,𝑒(𝑑),𝑒(π‘‘βˆ’1),π‘’ξ…žξ€Έ(𝑑)=0,π‘‘βˆˆ(0,1),(1.4)𝑒(𝑑)=πœ‰(𝑑),βˆ’1≀𝑑≀0,𝑒(1)=0,(1.5)𝑒(𝑑)=πœ‰(𝑑),βˆ’1≀𝑑≀0,π‘’ξ…ž(1)=0.(1.5ξ…ž) They obtained some results for the existence three positive solutions of the problem (1.4), (1.5) and (1.4), and (1.5ξ…ž), respectively.

In [15], Lee and Sim discussed the following equation:ξ€·πœ™π‘ξ€·π‘’ξ…žξ€Έξ€Έξ…ž+πœ†β„Ž(𝑑)𝑓(𝑒(𝑑))=0,a.e.π‘‘βˆˆ(0,1),𝑒(0)=𝑒(1)=0.(1.6) By applying the global bifurcation theorem and figuring the shape of unbounded subcontinua of solutions, they obtain many different types of global existence results of positive solutions.

However, there are not many concerning the 𝑝-Laplacian problems on time scales. Especially, for the singular multipoint boundary value problems for 𝑝-Laplacian dynamic delay differential equations on time scales, with the author’s acknowledge, no one has studied the existence of positive solutions in this case.

Recently, in [16], we have studied the existence of positive solutions for the following nonlinear two-point singular boundary value problem with 𝑝-Laplacian operator:ξ€·πœ™π‘ξ€·π‘’ξ…žξ€Έξ€Έξ…ž+π‘Ž(𝑑)𝑓(𝑒(𝑑))=0,0<𝑑<1,π›Όπœ™π‘(𝑒(0))βˆ’π›½πœ™π‘ξ€·π‘’ξ…žξ€Έ(0)=0,π›Ύπœ™π‘(𝑒(1))+π›Ώπœ™π‘ξ€·π‘’ξ…žξ€Έ(1)=0.(1.7) By using the fixed-point theorem of cone expansion and compression of norm type, the existence of positive solution and infinitely many positive solutions for nonlinear singular boundary value problem (1.7) with 𝑝-Laplacian operator is obtained.

Now, motivated by the results mentioned above, in this paper, we study the existence of positive solutions for the following nonlinear four-point singular boundary value problem with higher-order 𝑝-Laplacian dynamic delay differential equations operator on time scales (SBVP):ξ€·πœ™π‘ξ€·π‘’Ξ”(𝑑)ξ€Έξ€Έβˆ‡+𝑔(𝑑)𝑓(𝑒(π‘‘βˆ’πœ),𝑒(𝑑))=0,0<𝑑<𝑇,𝜏>0,(1.8)𝑒(𝑑)=𝜁(𝑑),βˆ’πœβ‰€π‘‘β‰€0,π›Όπœ™π‘(𝑒(0))βˆ’π›½πœ™π‘ξ€·π‘’Ξ”ξ€Έ(πœ‰)=0,π›Ύπœ™π‘(𝑒(𝑇))+π›Ώπœ™π‘ξ€·π‘’Ξ”ξ€Έ(πœ‚)=0,(1.9) or𝑒(𝑑)=𝜁(𝑑),βˆ’πœβ‰€π‘‘β‰€0,𝑒(0)βˆ’π΅0𝑒Δ(πœ‰)=0,𝑒(𝑇)+𝐡1𝑒Δ(πœ‚)=0,(1.10) where πœ™π‘(𝑠) is 𝑝-Laplacian operator, that is, πœ™π‘(𝑠)=|𝑠|π‘βˆ’2𝑠,𝑝>1, πœ™π‘ž=πœ™π‘βˆ’1, 1/𝑝+1/π‘ž=1. πœ‰,πœ‚βˆˆ(0,𝑇), 𝜏∈[0,𝑇] is prescribed and πœ‰<πœ‚, π‘”βˆΆ(0,𝑇)β†’[0,∞), 𝛼>0,𝛽β‰₯0,𝛾>0,𝛿β‰₯0 and 𝐡0,𝐡1 are both nondecreasing continuous odd functions defined on (βˆ’βˆž,+∞).

In this paper, by constructing one integral equation which is equivalent to the problem (1.8), (1.9) and (1.8), and (1.10), we research the existence of positive solutions for nonlinear singular boundary value problem (1.8), (1.9) and (1.8), and (1.10) when 𝑔 and 𝑓 satisfy some suitable conditions.

Our main tool of this paper is the following fixed point index theory.

Theorem 1.1 (see [17, 18]). Suppose that 𝐸 is a real Banach space, πΎβŠ‚πΈ is a cone, let Ξ©π‘Ÿ={π‘’βˆˆπΎβˆΆβ€–π‘’β€–β‰€π‘Ÿ}. Let operator π‘‡βˆΆΞ©π‘Ÿβ†’πΎ be completely continuous and satisfy 𝑇π‘₯β‰ π‘₯,βˆ€π‘₯βˆˆπœ•Ξ©π‘Ÿ. Then(i)if ‖𝑇π‘₯‖≀‖π‘₯β€–,βˆ€π‘₯βˆˆπœ•Ξ©π‘Ÿ, then 𝑖(𝑇,Ξ©π‘Ÿ,𝐾)=1;(ii)if ‖𝑇π‘₯β€–β‰₯β€–π‘₯β€–,βˆ€π‘₯βˆˆπœ•Ξ©π‘Ÿ, then 𝑖(𝑇,Ξ©π‘Ÿ,𝐾)=0.

This paper is organized as follows. In Section 2, we present some preliminaries and lemmas that will be used to prove our main results. In Section 3, we discuss the existence of single solution of the systems (1.8) and (1.9). In Section 4, we study the existence of at least two solutions of the systems (1.8) and (1.9). In Section 5, we discuss the existence of single and many solutions of the systems (1.8) and (1.10). In Section 6, we give two examples as the application.

2. Preliminaries and Lemmas

For convenience, we can found some basic definitions in [1, 19, 20].

In the rest of this paper, 𝐓 is closed subset of 𝑅 with 0βˆˆπ“π‘˜,π‘‡βˆˆπ“π‘˜. And let 𝐡={π‘’βˆˆπΆπ‘™π‘‘[βˆ’πœ,𝑇]}, then 𝐡 is a Banach space with the norm ‖𝑒‖=maxπ‘‘βˆˆ[βˆ’πœ,𝑇]|𝑒(𝑑)|. And let𝐾={π‘’βˆˆπ΅βˆΆπ‘’(𝑑)β‰₯0,𝑒(𝑑)isconcavefunction[],π‘‘βˆˆ0,𝑇}.(2.1) Obviously, 𝐾 is a cone in 𝐡. Set πΎπ‘Ÿ={π‘’βˆˆπΎβˆΆβ€–π‘’β€–β‰€π‘Ÿ}.

Definition 2.1. 𝑒(𝑑) is called a solution of SBVP (1.8) and (1.9) if it satisfies the following:(1)π‘’βˆˆπΆ[βˆ’πœ,0]βˆ©πΆπ‘™π‘‘(0,𝑇),(2)𝑒(𝑑)>0 for all π‘‘βˆˆ(0,𝑇) and satisfies conditions (1.9),(3)(πœ™π‘(𝑒Δ(𝑑)))βˆ‡=βˆ’π‘”(𝑑)𝑓(𝑒(π‘‘βˆ’πœ),𝑒(𝑑)) holds for π‘‘βˆˆ(0,𝑇). In the rest of the paper, we also make the following assumptions:(𝐻1)β€‰π‘“βˆˆπΆπ‘™π‘‘([0,+∞)2,[0,+∞)),(𝐻2)𝑔(𝑑)βˆˆπΆπ‘™π‘‘((0,𝑇),[0,+∞)) and there exists 𝑑0∈(0,𝑇), such that 𝑔𝑑0ξ€Έξ€œ>0,0<𝑇0𝑔(𝑠)βˆ‡π‘ <+∞,(2.2)(𝐻3)𝜁(𝑑)∈𝐢([βˆ’πœ,0], 𝜁(𝑑)>0 on [βˆ’πœ,0) and 𝜁(0)=0,(𝐻4)𝐡0,𝐡1 are both increasing, continuous, odd functions defined on (βˆ’βˆž,+∞), and at least one of them satisfies the condition that there exists one 𝑏>0 such that 0<𝐡𝑖(𝑣)≀𝑏𝑣,βˆ€π‘£β‰₯0,𝑖=0or1.(2.3)It is easy to check that condition (𝐻2) implies that ξ€œ0<𝑇0πœ™π‘žξ‚΅ξ€œπ‘ 0𝑔𝑠1ξ€Έβˆ‡π‘ 1Δ𝑠<+∞.(2.4) We can easily get the following Lemmas.

Lemma 2.2. Suppose that condition (𝐻2) holds. Then there exists a constant πœƒβˆˆ(0,1/2) that satisfies ξ€œ0<πœƒπ‘‡βˆ’πœƒπ‘”(𝑑)βˆ‡π‘‘<∞.(2.5) Furthermore, the function ξ€œπ΄(𝑑)=π‘‘πœƒπœ™π‘žξ‚΅ξ€œπ‘‘π‘ π‘”ξ€·π‘ 1ξ€Έβˆ‡π‘ 1ξ‚Άξ€œΞ”π‘ +π‘‘π‘‡βˆ’πœƒπœ™π‘žξ‚΅ξ€œπ‘ π‘‘π‘”ξ€·π‘ 1ξ€Έβˆ‡π‘ 1ξ‚Ά[]βˆ‡π‘ ,π‘‘βˆˆπœƒ,π‘‡βˆ’πœƒ(2.6) is positive continuous functions on [πœƒ,π‘‡βˆ’πœƒ]; therefore, 𝐴(𝑑) has minimum on [πœƒ,π‘‡βˆ’πœƒ]. Hence, we suppose that there exists 𝐿>0 such that 𝐴(𝑑)β‰₯𝐿,π‘‘βˆˆ[πœƒ,π‘‡βˆ’πœƒ].

Proof. At first, it is easily seen that 𝐴(𝑑) is continuous on [πœƒ,π‘‡βˆ’πœƒ]. Nest, let 𝐴1ξ€œ(𝑑)=π‘‘πœƒπœ™π‘žξ‚΅ξ€œπ‘‘π‘ π‘”ξ€·π‘ 1ξ€Έβˆ‡π‘ 1Δ𝑠,𝐴2ξ€œ(𝑑)=π‘‘π‘‡βˆ’πœƒπœ™π‘žξ‚΅ξ€œs𝑑𝑔𝑠1ξ€Έβˆ‡π‘ 1Δ𝑠.(2.7) Then, from condition (𝐻2), we have the function 𝐴1(𝑑) is strictly monotone nondecreasing on [πœƒ,π‘‡βˆ’πœƒ] and 𝐴1(πœƒ)=0, the function 𝐴2(𝑑) is strictly monotone nonincreasing on [πœƒ,π‘‡βˆ’πœƒ] and 𝐴2(π‘‡βˆ’πœƒ)=0, which implies 𝐿=minπ‘‘βˆˆ[πœƒ,π‘‡βˆ’πœƒ]𝐴(𝑑)>0. The proof is complete.

Lemma 2.3 (see [16]). Let π‘’βˆˆπΎ and πœƒ of Lemma 2.2, then [].𝑒(𝑑)β‰₯πœƒβ€–π‘’β€–,π‘‘βˆˆπœƒ,π‘‡βˆ’πœƒ(2.8)

Lemma 2.4. Suppose that conditions (𝐻1),(𝐻2),(𝐻3), and (𝐻4) hold, 𝑒(𝑑)βˆˆπ΅βˆ©πΆπ‘™π‘‘(0,1) is a solution of the following boundary value problems: ξ€·πœ™π‘ξ€·π‘’Ξ”(𝑑)ξ€Έξ€Έβˆ‡+𝑔(𝑑)𝑓(𝑒(π‘‘βˆ’πœ)+β„Ž(π‘‘βˆ’πœ),𝑒(𝑑))=0,0<𝑑<𝑇,(2.9)𝑒(𝑑)=0,βˆ’πœβ‰€π‘‘β‰€0,π›Όπœ™π‘(𝑒(0))βˆ’π›½πœ™π‘ξ€·π‘’Ξ”ξ€Έ(πœ‰)=0,π›Ύπœ™π‘(𝑒(𝑇))+π›Ώπœ™π‘ξ€·π‘’Ξ”ξ€Έ(πœ‚)=0,(2.10) or 𝑒(𝑑)=0,βˆ’πœβ‰€π‘‘β‰€0,𝑒(0)βˆ’π΅0𝑒Δ(πœ‰)=0,𝑒(𝑇)+𝐡1𝑒Δ(πœ‚)=0,(2.10ξ…ž) where ξ‚»β„Ž(𝑑)=𝜁(𝑑),βˆ’πœβ‰€π‘‘β‰€0,0,0≀𝑑≀𝑇.(2.11) Then, 𝑒(𝑑)=𝑒(𝑑)+β„Ž(𝑑),βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8) and (1.9) or (1.8) and (1.10).

Proof. It is easy to check that 𝑒(𝑑) satisfies (1.8) and (1.9) or (1.8) and (1.10).

So in the rest section of this paper, we focus on SBVP (2.9), (2.10), and (2.9), (2.10ξ…ž).

Lemma 2.5. Suppose that conditions (𝐻1),(𝐻2),(𝐻3),or (𝐻1),(𝐻2),(𝐻3),(𝐻4), hold, 𝑒(𝑑)βˆˆπ΅βˆ©πΆπ‘™π‘‘(0,1) is a solution of boundary value problems (2.9), (2.10) or (2.9), (2.10ξ…ž), respectively, if and only if 𝑒(𝑑)∈𝐡 is a solution of the following integral equation, respectively: ⎧βŽͺ⎨βŽͺβŽ©ξ€œπ‘’(𝑑)=𝜁(𝑑),βˆ’πœβ‰€π‘‘β‰€0,𝑑0π‘’βŽ§βŽͺ⎨βŽͺβŽ©ξ€œπ‘€(𝑠)Δ𝑠,0≀𝑑≀𝑇,(𝑑)=𝜁(𝑑),βˆ’πœβ‰€π‘‘β‰€0,t0𝑀(𝑠)Δ𝑠,0≀𝑑≀𝑇,(2.12) where π‘€βŽ§βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽ©πœ™(𝑑)=π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‘0πœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Άπœ™π‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ ,0β‰€π‘‘β‰€πœŽ,π‘žξ‚΅π›Ώπ›Ύξ€œπœ‚πœŽξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡π‘‘πœ™π‘žξ‚΅ξ€œπ‘ πœŽξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ ,πœŽβ‰€π‘‘β‰€π‘‡,(2.13)⎧βŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽ©π΅π‘€(𝑑)=0βˆ˜πœ™π‘žξ‚΅ξ€œπœšπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‘0πœ™π‘žξ‚΅ξ€œπœšπ‘ ξ‚Άπ΅π‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ ,0β‰€π‘‘β‰€πœš,1βˆ˜πœ™π‘žξ‚΅ξ€œπœ‚πœšξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡π‘‘πœ™π‘žξ‚΅ξ€œπ‘ πœšπ‘”ξ‚Ά(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ ,πœšβ‰€π‘‘β‰€π‘‡.(2.13ξ…ž) Here 𝜎,𝜚 is unique solution of the equation, respectively, 𝑔1(𝑑)=𝑔2(𝑑),𝑔1(𝑑)=𝑔2(𝑑),(2.14) where 𝑔1(𝑑)=πœ™π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‘0πœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Άπ‘”π‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ ,2(𝑑)=πœ™π‘žξ‚΅π›Ώπ›Ύξ€œπœ‚πœŽξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡π‘‘πœ™π‘žξ‚΅ξ€œπ‘ πœŽξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ ,𝑔1(𝑑)=𝐡0βˆ˜πœ™π‘žξ‚΅ξ€œπœšπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‘0πœ™π‘žξ‚΅ξ€œπœšπ‘ ξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ ,𝑔2(𝑑)=𝐡1βˆ˜πœ™π‘žξ‚΅ξ€œπœ‚πœšξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡π‘‘πœ™π‘žξ‚΅ξ€œπ‘ πœšξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ .(2.15) Equation 𝑔1(𝑑)=𝑔2(𝑑), 𝑔1(𝑑)=𝑔2(𝑑) has unique solution in (0,𝑇). Because 𝑔1(𝑑), 𝑔1(𝑑) is strictly monotone increasing on [0,𝑇), and 𝑔1(0)=0, 𝑔1(0)=0, 𝑔2(𝑑),𝑔2(𝑑) is strictly monotone decreasing on (0,𝑇], and 𝑔2(𝑇)=0, 𝑔2(𝑇)=0.

Proof. We only proof the first section of the results.
Necessity. Obviously, for π‘‘βˆˆ(βˆ’πœ,0), we have 𝑒(𝑑)=𝜁(𝑑).
If π‘‘βˆˆ(0,𝑇), by the equation of the boundary condition and we have 𝑒Δ(πœ‰)β‰₯0,𝑒Δ(πœ‚)≀0, then there exist is a constant 𝜎∈[πœ‰,πœ‚]βŠ‚(0,𝑇) such that 𝑒Δ(𝜎)=0.
Firstly, by integrating the equation of the problems (2.9) on (𝜎,𝑑), we have πœ™π‘ξ€·π‘’Ξ”(𝑑)=πœ™π‘ξ€·π‘’Ξ”(ξ€Έβˆ’ξ€œπœŽ)π‘‘πœŽπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ ,(2.16) then 𝑒Δ(𝑑)=βˆ’πœ™π‘žξ‚΅ξ€œπ‘‘πœŽξ‚Ά,𝑔(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ (2.17) thus ξ€œπ‘’(𝑑)=𝑒(𝜎)βˆ’π‘‘πœŽπœ™π‘žξ‚΅ξ€œπ‘ πœŽξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ .(2.18)
By 𝑒Δ(𝜎)=0 and condition (2.16), 𝑑=πœ‚ on (2.16), we have πœ™π‘ξ€·π‘’Ξ”ξ€Έξ€œ(πœ‚)=βˆ’πœ‚πœŽπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ .(2.19) By the equation of the boundary condition (2.10), we have πœ™π‘π›Ώ(𝑒(𝑇))=βˆ’π›Ύπœ™π‘ξ€·π‘’Ξ”ξ€Έ,(πœ‚)(2.20) then 𝑒(𝑇)=πœ™π‘žξ‚΅π›Ώπ›Ύξ€œπœ‚πœŽξ‚Ά.𝑔(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ (2.21) Then, by (2.18) and let 𝑑=𝑇 on (2.18), we have 𝑒(𝜎)=πœ™π‘žξ‚΅π›Ώπ›Ύξ€œπœ‚πœŽξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡πœŽπœ™π‘žξ‚΅ξ€œπ‘ πœŽξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ .(2.22) Then 𝑒(𝑑)=πœ™π‘žξ‚΅π›Ώπ›Ύξ€œπœ‚πœŽξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡π‘‘πœ™π‘žξ‚΅ξ€œπ‘ πœŽξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ .(2.23) Similarly, for π‘‘βˆˆ(0,𝜎), by integrating the equation of problems (2.9) on (0,𝜎), we have 𝑒(𝑑)=πœ™π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ Ξ”π‘ π‘‘0πœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ .(2.24) Therefore, for any π‘‘βˆˆ[0,𝑇], 𝑒(𝑑) can be expressed as equation ⎧βŽͺ⎨βŽͺβŽ©ξ€œπ‘’(𝑑)=𝜁(𝑑),βˆ’πœβ‰€π‘‘β‰€0,𝑑0𝑀(𝑠)Δ𝑠,0≀𝑑≀𝑇,(2.25) where 𝑀(𝑑) is expressed as (2.13).
Sufficiency. Suppose that βˆ«π‘’(𝑑)=𝑑0𝑀(𝑠)Ξ”π‘ π‘›βˆ’2Δ𝑠,0≀𝑑≀𝑇. Then by (2.13), we have π‘’Ξ”βŽ§βŽͺ⎨βŽͺβŽ©πœ™(𝑑)=π‘žξ‚΅ξ€œπœŽπ‘‘ξ‚Άπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ β‰₯0,0β‰€π‘‘β‰€πœŽ,βˆ’πœ™π‘žξ‚΅ξ€œπ‘‘πœŽξ‚Άπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ β‰€0,πœŽβ‰€π‘‘β‰€π‘‡,(2.26) So, (πœ™π‘(𝑒Δ)βˆ‡+𝑔(𝑑)𝑓(𝑒(π‘‘βˆ’πœ)+β„Ž(π‘‘βˆ’πœ),𝑒(𝑑))=0,0<𝑑<𝑇. These imply that (2.9) holds. Furthermore, by letting 𝑑=0 and 𝑑=𝑇 on (2.13) and (2.26), we can obtain the boundary value equations of (2.10). The proof is complete.

Now, we define an operetor equation 𝑇 given by⎧βŽͺ⎨βŽͺβŽ©ξ€œ(𝑇𝑒)(𝑑)=𝜁(𝑑),βˆ’πœβ‰€π‘‘β‰€0,𝑑0𝑀(𝑠)Δ𝑠,0≀𝑑≀𝑇,ξ‚βŽ§βŽͺ⎨βŽͺβŽ©ξ€œπ‘‡π‘’(𝑑)=𝜁(𝑑),βˆ’πœβ‰€π‘‘β‰€0,𝑑0𝑀(𝑠)Δ𝑠,0≀𝑑≀𝑇,(2.27) where 𝑀(𝑑),𝑀(𝑑) is given by (2.13) and (2.13ξ…ž).

From the definition of 𝑇,𝑇 and above discussion, we deduce that for each π‘’βˆˆπΎ,𝑇𝑒,π‘‡π‘’βˆˆπΎ. Moreover, we have the following Lemma.

Lemma 2.6. 𝑇,π‘‡βˆΆπΎβ†’πΎ is completely continuous.

Proof. We only proof the completely continuous of 𝑇.
Because (𝑇𝑒)Ξ”(𝑑)=π‘€Ξ”βŽ§βŽͺ⎨βŽͺβŽ©πœ™(𝑑)=π‘žξ‚΅ξ€œπœŽπ‘‘ξ‚Άπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ β‰₯0,0β‰€π‘‘β‰€πœŽβˆ’πœ™π‘žξ‚΅ξ€œπ‘‘πœŽξ‚Άπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ β‰€0,πœŽβ‰€π‘‘β‰€π‘‡,(2.28) is continuous, decreasing on [0,𝑇], and satisfies that (𝑇𝑒)Ξ”(𝜎)=0, then, π‘‡π‘’βˆˆπΎ for each π‘’βˆˆπΎ and (𝑇𝑒)(𝜎)=maxπ‘‘βˆˆ[0,𝑇](𝑇𝑒)(𝑑). This shows that π‘‡πΎβŠ‚πΎ. Furthermore, it is easy to check by Arzela-ascoli Theorem that π‘‡βˆΆπΎβ†’πΎ is completely continuous.

Lemma 2.7. Suppose that conditions (𝐻1),(𝐻2), and (𝐻3) hold, the solution 𝑒(𝑑)∈𝐾 of problem (2.9) and (2.10) satisfy max0≀𝑑≀𝑇||||𝑒(π‘‘βˆ’πœ)+β„Ž(π‘‘βˆ’πœ)≀maxβˆ’πœβ‰€π‘‘β‰€0||||.𝜁(𝑑)(2.29)

Proof. Firstly, we can have max0≀𝑑≀𝑇||||𝑒(π‘‘βˆ’πœ)+β„Ž(π‘‘βˆ’πœ)≀max0≀𝑑≀𝑇||||𝑒(π‘‘βˆ’πœ)+max0≀𝑑≀𝑇||||β„Ž(π‘‘βˆ’πœ)=maxβˆ’πœβ‰€π‘‘β‰€π‘‡βˆ’πœ||||𝑒(𝑑)+maxβˆ’πœβ‰€π‘‘β‰€π‘‡βˆ’πœ||||β„Ž(𝑑)=maxβˆ’πœβ‰€π‘‘β‰€0||||.𝜁(𝑑)(2.30) The proof is complete.

For convenience, we set𝐻=maxβˆ’πœβ‰€π‘‘β‰€0||||𝜁(𝑑),πœƒβˆ—=2𝐿,πœƒβˆ—=1𝑇+πœ™π‘ž(ξ€Έπœ™π›½/𝛼)π‘žξ‚€βˆ«π‘‡0𝑔(π‘Ÿ)βˆ‡π‘Ÿ,πœƒβˆ—βˆ—=1(𝑏+1)πœ™π‘žξ‚€βˆ«T0,𝑔(π‘Ÿ)βˆ‡π‘Ÿ(2.31) where 𝐿 is the constant from Lemma 2.2. By Lemma 2.5, we can also set𝑓0=lim𝑒2β†’0max0≀𝑒1≀𝐻𝑓𝑒1,𝑒2𝑒2π‘βˆ’1,π‘“βˆž=lim𝑒2β†’βˆžmax0≀𝑒1≀𝐻𝑓𝑒1,𝑒2𝑒2π‘βˆ’1,𝑓0=lim𝑒2β†’0min0≀𝑒1≀𝐻𝑓𝑒1,𝑒2𝑒2π‘βˆ’1π‘“βˆž=lim𝑒2β†’βˆžmin0≀𝑒1≀𝐻𝑓𝑒1,𝑒2𝑒2π‘βˆ’1.(2.32)

3. The Existence of Single Positive Solution to (1.8) and (1.9)

In this section, we present our main results.

Theorem 3.1. Suppose that condition (𝐻1),(𝐻2), and (𝐻3) hold. Assume that 𝑓 also satisfies(𝐴1):𝑓(𝑒1,𝑒2)β‰₯(π‘šπ‘Ÿ)π‘βˆ’1, for πœƒπ‘Ÿβ‰€π‘’2β‰€π‘Ÿ, 0≀𝑒1≀𝐻,(𝐴2):𝑓(𝑒1,𝑒2)≀(𝑀𝑅)π‘βˆ’1, for 0≀𝑒2≀𝑅,0≀𝑒1≀𝐻,where π‘šβˆˆ(πœƒβˆ—,∞), π‘€βˆˆ(0,πœƒβˆ—).
Then, the SBVP (2.9), (2.10) has a solution 𝑒 such that ‖𝑒‖ lies between π‘Ÿ and 𝑅. Furthermore by Lemma 2.4, 𝑒(𝑑)=𝑒(𝑑)+β„Ž(𝑑),βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8) and (1.9).

Proof of Theorem 3.1. Without loss of generality, we suppose that π‘Ÿ<𝑅. For any π‘’βˆˆπΎ, by Lemma 2.3, we have [].𝑒(𝑑)β‰₯πœƒβ€–π‘’β€–,π‘‘βˆˆπœƒ,π‘‡βˆ’πœƒ(3.1) We define two open subset Ξ©1 and Ξ©2 of 𝐸: Ξ©1={π‘’βˆˆπΎβˆΆβ€–π‘’β€–<π‘Ÿ},Ξ©2={π‘’βˆˆπΎβˆΆβ€–π‘’β€–<𝑅}.(3.2) For any π‘’βˆˆπœ•Ξ©1, by (3.1), we have [].π‘Ÿ=‖𝑒‖β‰₯𝑒(𝑑)β‰₯πœƒβ€–π‘’β€–=πœƒπ‘Ÿ,π‘‘βˆˆπœƒ,π‘‡βˆ’πœƒ(3.3) For π‘‘βˆˆ[πœƒ,π‘‡βˆ’πœƒ] and π‘’βˆˆπœ•Ξ©1, we shall discuss it from three perspectives.(i)If 𝜎∈[πœƒ,π‘‡βˆ’πœƒ], thus for π‘’βˆˆπœ•Ξ©1, by (𝐴1) and Lemma 2.4, we haveβ‰₯ξ€œ2‖𝑇𝑒‖=2(𝑇𝑒)(𝜎)𝜎0πœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Ά+ξ€œπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ π‘‡πœŽπœ™π‘žξ‚΅ξ€œπ‘ πœŽξ‚Άβ‰₯ξ€œπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ πœŽπœƒπœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Ά+ξ€œπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ πœŽπ‘‡βˆ’πœƒπœ™π‘žξ‚΅ξ€œπ‘ πœŽπ‘”ξ‚Ά(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ β‰₯π‘šπ‘Ÿπ΄(𝜎)β‰₯π‘šπ‘ŸπΏβ‰₯2π‘Ÿ=2‖𝑒‖.(3.4)(ii)If 𝜎∈(π‘‡βˆ’πœƒ,𝑇], thus for π‘’βˆˆπœ•Ξ©1, by (𝐴1) and Lemma 2.4, we have‖𝑇𝑒‖=(𝑇𝑒)(𝜎)β‰₯πœ™π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ πœŽ0πœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Άβ‰₯ξ€œπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ πœƒπ‘‡βˆ’πœƒπœ™π‘žξ‚΅ξ€œπ‘ π‘‡βˆ’πœƒξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ β‰₯π‘šπ‘Ÿπ΄(π‘‡βˆ’πœƒ)β‰₯π‘šπ‘ŸπΏβ‰₯2π‘Ÿ>π‘Ÿ=‖𝑒‖.(3.5)(iii)If 𝜎∈(0,πœƒ), thus for π‘’βˆˆπœ•Ξ©1, by (𝐴1) and Lemma 2.4, we have‖𝑇𝑒‖=(𝑇𝑒)(𝜎)β‰₯πœ™π‘žξ‚΅π›Ώπ›Ύξ€œπœ‚πœŽξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡πœŽπœ™π‘žξ‚΅ξ€œπ‘ πœŽξ‚Άβ‰₯ξ€œπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ πœƒπ‘‡βˆ’πœƒπœ™π‘žξ‚΅ξ€œπ‘ πœƒξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ β‰₯π‘šπ‘Ÿπ΄(πœƒ)β‰₯π‘šπ‘ŸπΏβ‰₯2π‘Ÿ>π‘Ÿ=‖𝑒‖.(3.6)
Therefore, no matter under which condition, we all have ‖𝑇𝑒‖>‖𝑒‖,βˆ€π‘’βˆˆπœ•Ξ©1.(3.7) Then by Theorem 1.1, we have 𝑖𝑇,Ξ©1ξ€Έ,𝐾=0.(3.8)
On the other hand, for π‘’βˆˆπœ•Ξ©2, we have 𝑒(𝑑)≀‖𝑒‖=𝑅, and by (𝐴2), we know that ‖𝑇𝑒‖=(𝑇𝑒)(𝜎)β‰€πœ™π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡0πœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Άβ‰€ξ‚΅π‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ π‘‡+πœ™π‘žξ‚΅π›½π›Όξ‚Άξ‚Άπ‘€π‘…πœ™π‘žξ‚΅ξ€œπ‘‡0𝑔(π‘Ÿ)βˆ‡π‘Ÿβ‰€π‘…=‖𝑒‖,(3.9) thus ‖𝑇𝑒‖≀‖𝑒‖,βˆ€π‘’βˆˆπœ•Ξ©2.(3.10) Then, by Theorem 1.1, we have 𝑖𝑇,Ξ©2ξ€Έ,𝐾=1.(3.11)
Therefore, by (3.8), and (3.11), π‘Ÿ<𝑅, we have 𝑖𝑇,Ξ©2⧡Ω1,𝐾=1.(3.12) Then operator 𝑇 has a fixed point π‘’βˆˆ(Ξ©1⧡Ω2), and π‘Ÿβ‰€β€–π‘’β€–β‰€π‘…. This completes the proof of Theorem 3.1.

Theorem 3.2. Suppose that condition (𝐻1),(𝐻2), and (𝐻3) hold. Assume that 𝑓 also satisfies(𝐴3)βˆΆπ‘“0=πœ‘βˆˆ[0,(πœƒβˆ—/4)π‘βˆ’1), (𝐴4)βˆΆπ‘“βˆž=πœ†βˆˆ((2πœƒβˆ—/πœƒ)π‘βˆ’1,∞). Then, the SBVP (2.9), (2.10) has a solution 𝑒 which is bounded in β€–β‹…β€–. Furthermore, by Lemma 2.4, 𝑒(𝑑)=𝑒(𝑑)+β„Ž(𝑑),βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.9).

Proof of Theorem 3.2. First, by 𝑓0=πœ‘βˆˆ[0,(πœƒβˆ—/4)π‘βˆ’1), for πœ–=(πœƒβˆ—/4)π‘βˆ’1βˆ’πœ‘, there exists an adequately small positive number 𝜌, as 0≀𝑒2β‰€πœŒ,𝑒2β‰ 0,𝑒1≀𝐻, we have 𝑓𝑒1,𝑒2𝑒≀(πœ‘+πœ–)2ξ€Έπ‘βˆ’1β‰€ξ‚΅πœƒβˆ—4ξ‚Άπ‘βˆ’1πœŒπ‘βˆ’1=ξ‚΅πœƒβˆ—4πœŒξ‚Άπ‘βˆ’1.(3.13) Then let 𝑅=𝜌,𝑀=πœƒβˆ—/4∈(0,πœƒβˆ—), thus by (3.13), 𝑓𝑒1,𝑒2≀(𝑀𝑅)π‘βˆ’1,0≀𝑒2≀𝑅.(3.14) So condition (𝐴2) holds.
Next, by condition (𝐴4), π‘“βˆž=πœ†βˆˆ((2πœƒβˆ—/πœƒ)π‘βˆ’1,∞), then for πœ–=πœ†βˆ’(2πœƒβˆ—/πœƒ)π‘βˆ’1, there exists an appropriately big positive number π‘Ÿβ‰ π‘…, as 𝑒2β‰₯πœƒπ‘Ÿ,𝑒1≀𝐻, we have 𝑓𝑒1,𝑒2𝑒β‰₯(πœ†βˆ’πœ–)2ξ€Έπ‘βˆ’1β‰₯ξ‚΅2πœƒβˆ—πœƒξ‚Άπ‘βˆ’1(πœƒπ‘Ÿ)π‘βˆ’1=ξ€·2πœƒβˆ—π‘Ÿξ€Έπ‘βˆ’1.(3.15) Let π‘š=2πœƒβˆ—>πœƒβˆ—, thus by (3.15), condition (𝐴1) holds. Therefore, by Theorem 3.1, we know that the results of Theorem 3.2 hold. The proof of Theorem 3.2 is complete.

Theorem 3.3. Suppose that conditions (𝐻1),(𝐻2),(𝐻3) hold. Assume that 𝑓 also satisfies(𝐴5):π‘“βˆž=πœ†βˆˆ[0,(πœƒβˆ—/4)π‘βˆ’1), (𝐴6):𝑓0=πœ‘βˆˆ((2πœƒβˆ—/πœƒ)π‘βˆ’1,∞). Then, the SBVP (2.9), (2.10) has a solution 𝑒 which is bounded in β€–β‹…β€–. Furthermore by Lemma 2.4, 𝑒(𝑑)=𝑒(𝑑)+β„Ž(𝑑),βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.9).

Proof of Theorem 3.3. First, by condition (𝐴6), 𝑓0=πœ‘βˆˆ((2πœƒβˆ—/πœƒ)π‘βˆ’1,∞), then for πœ–=πœ‘βˆ’(2πœƒβˆ—/πœƒ)π‘βˆ’1, there exists an adequately small positive number π‘Ÿ, as 0≀𝑒2β‰€π‘Ÿ,𝑒2β‰ 0,𝑒1≀𝐻, we have 𝑓𝑒1,𝑒2𝑒β‰₯(πœ‘βˆ’πœ–)2ξ€Έπ‘βˆ’1=ξ‚΅2πœƒβˆ—πœƒξ‚Άπ‘βˆ’1𝑒2ξ€Έπ‘βˆ’1,(3.16) thus when πœƒπ‘Ÿβ‰€π‘’2β‰€π‘Ÿ,𝑒1≀𝐻, we have 𝑓𝑒1,𝑒2ξ€Έβ‰₯ξ‚΅2πœƒβˆ—πœƒξ‚Άπ‘βˆ’1(πœƒπ‘Ÿ)π‘βˆ’1=ξ€·2πœƒβˆ—π‘Ÿξ€Έπ‘βˆ’1.(3.17) Let π‘š=2πœƒβˆ—>πœƒβˆ—, so by (3.17), condition (𝐴1) holds.
Next, by condition (𝐴5): π‘“βˆž=πœ†βˆˆ[0,(πœƒβˆ—/4)π‘βˆ’1), then for πœ–=(πœƒβˆ—/4)π‘βˆ’1βˆ’πœ†, there exists an suitably big positive number πœŒβ‰ π‘Ÿ, as 𝑒2β‰₯𝜌,𝑒1≀𝐻, we have 𝑓𝑒1,𝑒2𝑒≀(πœ†+πœ–)2ξ€Έπ‘βˆ’1β‰€ξ‚΅πœƒβˆ—4ξ‚Άπ‘βˆ’1𝑒2ξ€Έπ‘βˆ’1.(3.18) If 𝑓 is unbounded, by the continuity of 𝑓 on [0,∞)2, then exists constant 𝑅(β‰ π‘Ÿ)β‰₯𝜌, and a point (𝑒01,𝑒02)∈[0,∞)2 such that πœŒβ‰€π‘’02𝑓𝑒≀𝑅,1,𝑒2𝑒≀𝑓01,𝑒02ξ€Έ,0≀𝑒2≀𝑅,𝑒1≀𝐻.(3.19) Thus, by πœŒβ‰€π‘’02≀𝑅,𝑒1≀𝐻, we know 𝑓𝑒1,𝑒2𝑒≀𝑓01,𝑒02ξ€Έβ‰€ξ‚΅πœƒβˆ—4ξ‚Άπ‘βˆ’1𝑒02ξ€Έπ‘βˆ’1β‰€ξ‚΅πœƒβˆ—4π‘…ξ‚Άπ‘βˆ’1.(3.20) Choose 𝑀=πœƒβˆ—/4∈(0,πœƒβˆ—). Then, we have 𝑓𝑒1,𝑒2≀(𝑀𝑅)π‘βˆ’1,0≀𝑒2≀𝑅,𝑒1≀𝐻.(3.21) If 𝑓 is bounded, we suppose 𝑓(𝑒1,𝑒2)β‰€π‘€π‘βˆ’1,𝑒2∈[0,∞),π‘€βˆˆπ‘…+, there exists an appropriately big positive number 𝑅>(4/πœƒβˆ—)𝑀, then choose 𝑀=πœƒβˆ—/4∈(0,πœƒβˆ—), we have 𝑓𝑒1,𝑒2ξ€Έβ‰€π‘€π‘βˆ’1β‰€ξ‚΅πœƒβˆ—4π‘…ξ‚Άπ‘βˆ’1=(𝑀𝑅)π‘βˆ’1,0≀𝑒2≀𝑅,𝑒1≀𝐻.(3.22) Therefore, condition (𝐴2) holds. Therefore, by Theorem 3.1, we know that the results of Theorem 3.3 holds. The proof of Theorem 3.3 is complete.

4. The Existence of Many Positive Solutions to (1.8) and (1.9)

Next, we will discuss the existence of many positive solutions.

Theorem 4.1. Suppose that conditions (𝐻1),(𝐻2),(𝐻3), and (𝐴2) in Theorem 3.1 hold. Assume that 𝑓 also satisfies(𝐴7):𝑓0=+∞, (𝐴8):π‘“βˆž=+∞. Then, the SBVP (2.9), (2.10) has at last two solutions 𝑒1,𝑒2 such that ‖‖𝑒0<1‖‖‖‖𝑒<𝑅<2β€–β€–.(4.1) Furthermore, by Lemma 2.4, 𝑒1(𝑑)=𝑒1(𝑑)+β„Ž(𝑑),𝑒2(𝑑)=𝑒2(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.9).

Proof of Theorem 4.1. First, by condition (𝐴7), for any 𝑁>2/πœƒπΏ, there exists a constant πœŒβˆ—βˆˆ(0,𝑅) such that 𝑓𝑒1,𝑒2ξ€Έβ‰₯𝑁𝑒2ξ€Έπ‘βˆ’1,0<𝑒2β‰€πœŒβˆ—,𝑒1≀𝐻.(4.2) Set Ξ©πœŒβˆ—={π‘’βˆˆπΎβˆΆβ€–π‘’β€–<πœŒβˆ—}, for any π‘’βˆˆπœ•Ξ©πœŒβˆ—, by (4.2) and Lemma 2.3, similar to the previous proof of Theorem 3.1, we can have from three perspectives ‖𝑇𝑒‖β‰₯‖𝑒‖,βˆ€π‘’βˆˆπœ•Ξ©πœŒβˆ—.(4.3) Then by Theorem 1.1, we have 𝑖𝑇,Ξ©πœŒβˆ—ξ€Έ,𝐾=0.(4.4) Next, by condition (𝐴8), for any 𝑁>2/πœƒπΏ, there exists a constant 𝜌0>0 such that 𝑓𝑒1,𝑒2ξ€Έβ‰₯𝑁𝑒2ξ‚π‘βˆ’1,𝑒2>𝜌0,𝑒1≀𝐻.(4.5) We choose a constant πœŒβˆ—>max{𝑅,𝜌0/πœƒ}, obviously πœŒβˆ—<𝑅<πœŒβˆ—. Set Ξ©πœŒβˆ—={π‘’βˆˆπΎβˆΆβ€–π‘’β€–<πœŒβˆ—}. For any π‘’βˆˆπœ•Ξ©πœŒβˆ—, by Lemma 2.3, we have 𝑒(𝑑)β‰₯πœƒβ€–π‘’β€–=πœƒπœŒβˆ—>𝜌0[].,π‘‘βˆˆπœƒ,π‘‡βˆ’πœƒ(4.6) Then by (4.5) and also similar to the previous proof of Theorem 3.1, we can also have from three perspectives ‖𝑇𝑒‖β‰₯‖𝑒‖,βˆ€π‘’βˆˆπœ•Ξ©πœŒβˆ—.(4.7) Then by Theorem 1.1, we have 𝑖𝑇,Ξ©πœŒβˆ—ξ€Έ,𝐾=0.(4.8)
Finally, set Ω𝑅={π‘’βˆˆπΎβˆΆβ€–π‘’β€–<𝑅}, For any π‘’βˆˆπœ•Ξ©π‘…, by (𝐴2), Lemma 2.3 and also similar to the latter proof of Theorem 3.1, we can also have ‖𝑇𝑒‖≀‖𝑒‖,βˆ€π‘’βˆˆπœ•Ξ©π‘….(4.9) Then by Theorem 1.1, we have 𝑖𝑇,Ω𝑅,𝐾=1.(4.10) Therefore, by (4.4), (4.8), (4.10), πœŒβˆ—<𝑅<πœŒβˆ—, we have 𝑖𝑇,Ξ©π‘…β§΅Ξ©πœŒβˆ—ξ‚ξ‚€,𝐾=1,𝑖𝑇,Ξ©πœŒβˆ—β§΅Ξ©π‘…ξ‚,𝐾=βˆ’1.(4.11) Then 𝑇 has fixed-point 𝑒1βˆˆΞ©π‘…β§΅Ξ©πœŒβˆ—, and fixed-point 𝑒2βˆˆΞ©πœŒβˆ—β§΅Ξ©π‘…. Obviously, 𝑒1,𝑒2 are all positive solutions of problem (2.9), (2.10) and πœŒβˆ—<‖𝑒1β€–<𝑅<‖𝑒2β€–<πœŒβˆ—. The proof of Theorem 4.1 is complete.

Theorem 4.2. Suppose that conditions (𝐻1),(𝐻2),(𝐻3), and (𝐴1) in Theorem 3.1 hold. Assume that 𝑓 also satisfies(𝐴9):𝑓0=0, (𝐴10):π‘“βˆž=0. Then, the SBVP (2.9), (2.10) has at last two solutions 𝑒1,𝑒2 such that 0<‖𝑒1β€–<π‘Ÿ<‖𝑒2β€–. Furthermore, by Lemma 2.4, 𝑒1(𝑑)=𝑒1(𝑑)+β„Ž(𝑑),𝑒2(𝑑)=𝑒2(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

Proof of Theorem 4.2. First, by 𝑓0=0, for πœ–1∈(0,πœƒβˆ—), there exists a constant πœŒβˆ—βˆˆ(0,π‘Ÿ) such that 𝑓𝑒1,𝑒2ξ€Έβ‰€ξ€·πœ–1𝑒2ξ€Έπ‘βˆ’1,0<𝑒2β‰€πœŒβˆ—,𝑒1≀𝐻.(4.12) Set Ξ©πœŒβˆ—={π‘’βˆˆπΎβˆΆβ€–π‘’β€–<πœŒβˆ—}, for any π‘’βˆˆπœ•Ξ©πœŒβˆ—, by (4.12), we have ‖𝑇𝑒‖=(𝑇𝑒)(𝜎)β‰€πœ™π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡0πœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ β‰€πœ™π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰π‘”ξ‚Ά(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ +π‘‡πœ™π‘žξ‚΅ξ€œπ‘‡0≀𝑔(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘Ÿπ‘‡+πœ™π‘žξ‚΅π›½π›Όπœ–ξ‚Άξ‚Ά1πœŒβˆ—πœ™π‘žξ‚΅ξ€œπ‘‡0𝑔(π‘Ÿ)βˆ‡π‘Ÿβ‰€πœŒβˆ—=‖𝑒‖,(4.13) that is ‖𝑇𝑒‖≀‖𝑒‖,βˆ€π‘’βˆˆπœ•Ξ©πœŒβˆ—.(4.14) Then by Theorem 1.1, we have 𝑖𝑇,Ξ©πœŒβˆ—ξ€Έ,𝐾=1.(4.15)
Next, let π‘“βˆ—(π‘₯)=max0≀𝑒2≀π‘₯,𝑒1≀𝐻𝑓(𝑒1,𝑒2), and note that π‘“βˆ—(π‘₯) is monotone increasing with respect to π‘₯β‰₯0. Then from π‘“βˆž=0, it is easy to see that limπ‘₯β†’βˆžπ‘“βˆ—(π‘₯)π‘₯π‘βˆ’1=0.(4.16) Therefore, for any πœ–2∈(0,πœƒβˆ—), there exists a constant πœŒβˆ—>π‘Ÿ such that π‘“βˆ—ξ€·πœ–(π‘₯)≀2π‘₯ξ€Έπ‘βˆ’1,π‘₯β‰₯πœŒβˆ—.(4.17) Set Ξ©πœŒβˆ—={π‘’βˆˆπΎβˆΆβ€–π‘’β€–<πœŒβˆ—}, for any π‘’βˆˆπœ•Ξ©πœŒβˆ—, by (4.17), we have ‖𝑇𝑒‖=(𝑇𝑒)(𝜎)β‰€πœ™π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰ξ‚Ά+ξ€œπ‘”(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ π‘‡0πœ™π‘žξ‚΅ξ€œπœŽπ‘ ξ‚Άπ‘”(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘ŸΞ”π‘ β‰€πœ™π‘žξ‚΅π›½π›Όξ€œπœŽπœ‰π‘”ξ‚Ά(𝑠)𝑓(𝑒(π‘ βˆ’πœ)+β„Ž(π‘ βˆ’πœ),𝑒(𝑠))βˆ‡π‘ +π‘‡πœ™π‘žξ‚΅ξ€œπ‘‡0≀𝑔(π‘Ÿ)𝑓(𝑒(π‘Ÿβˆ’πœ)+β„Ž(π‘Ÿβˆ’πœ),𝑒(π‘Ÿ))βˆ‡π‘Ÿπ‘‡+πœ™π‘žξ‚΅π›½π›Όπœ™ξ‚Άξ‚Άπ‘žξ‚΅ξ€œπ‘‡0𝑔(π‘Ÿ)π‘“βˆ—ξ€·πœŒβˆ—ξ€Έξ‚Άβ‰€ξ‚΅βˆ‡π‘Ÿπ‘‡+πœ™π‘žξ‚΅π›½π›Όπœ–ξ‚Άξ‚Ά2πœŒβˆ—πœ™π‘žξ‚΅ξ€œπ‘‡0𝑔(π‘Ÿ)βˆ‡π‘Ÿβ‰€π‘Ÿβˆ—=‖𝑒‖,(4.18) that is ‖𝑇𝑒‖≀‖𝑒‖,βˆ€π‘’βˆˆπœ•Ξ©πœŒβˆ—.(4.19) Then by Theorem 1.1, we have 𝑖𝑇,Ξ©πœŒβˆ—ξ€Έ,𝐾=1.(4.20)
Finally, set Ξ©π‘Ÿ={π‘’βˆˆπΎβˆΆβ€–π‘’β€–<π‘Ÿ}. For any π‘’βˆˆπœ•Ξ©π‘Ÿ, by (𝐴1), Lemma 2.3 and also similar to the previous proof of Theorem 3.1, we can also have ‖𝑇𝑒‖β‰₯‖𝑒‖,βˆ€π‘’βˆˆπœ•Ξ©π‘Ÿ.(4.21) Then by Theorem 1.1, we have 𝑖𝑇,Ξ©π‘Ÿξ€Έ,𝐾=0.(4.22) Therefore, by (4.15), (4.20), (4.22), πœŒβˆ—<π‘Ÿ<πœŒβˆ—, we have 𝑖𝑇,Ξ©π‘Ÿβ§΅Ξ©πœŒβˆ—ξ‚ξ‚€,𝐾=βˆ’1,𝑖𝑇,Ξ©πœŒβˆ—β§΅Ξ©π‘Ÿξ‚,𝐾=1.(4.23) Then 𝑇 have fixed point 𝑒1βˆˆΞ©π‘Ÿβ§΅Ξ©πœŒβˆ—, and fixed point 𝑒2βˆˆΞ©πœŒβˆ—β§΅Ξ©π‘Ÿ. Obviously, 𝑒1,𝑒2 are all positive solutions of problem (1.8), (1.9) and πœŒβˆ—<‖𝑒1β€–<π‘Ÿ<‖𝑒2β€–<πœŒβˆ—. The proof of Theorem 4.2 is complete.

Similar to Theorem 3.1, we also obtain the following Theorems.

Theorem 4.3. Suppose that conditions (𝐻1),(𝐻2),(𝐻3) and (𝐴2) in Theorem 3.1, (𝐴4) in Theorem 3.2 and (𝐴6) in Theorem 3.3 hold. Then, the SBVP (2.9), (2.10) has at last two solutions 𝑒1,𝑒2 such that 0<‖𝑒1β€–<𝑅<‖𝑒2β€–. Furthermore by Lemma 2.4, 𝑒1(𝑑)=𝑒1(𝑑)+β„Ž(𝑑),𝑒2(𝑑)=𝑒2(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

Theorem 4.4. Suppose that conditions (𝐻1),(𝐻2),(𝐻3) and (𝐴1) in Theorem 3.1, (𝐴3) in Theorem 3.2 and (𝐴5) in Theorem 3.3 hold. Then, the SBVP (2.9), (2.10) have at last two solutions 𝑒1,𝑒2 such that 0<‖𝑒1β€–<π‘Ÿ<‖𝑒2β€–. Furthermore by Lemma 2.4, 𝑒1(𝑑)=𝑒1(𝑑)+β„Ž(𝑑), 𝑒2(𝑑)=𝑒2(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

5. The Existence of Many Positive Solutions to (1.8) and (1.10)

In the following, we will deal with problem (1.8), (1.10), the method is similar to that in Sections 3 and 4, so we omit many proof in this section.

Theorem 5.1. Suppose that condition (𝐻1),(𝐻2),(𝐻3),(𝐻4) hold. Assume that 𝑓 also satisfies(π΄ξ…ž1):𝑓(𝑒1,𝑒2)β‰₯(π‘šπ‘Ÿ)π‘βˆ’1, for πœƒπ‘Ÿβ‰€π‘’2β‰€π‘Ÿ,0≀𝑒1≀𝐻,(π΄ξ…ž2):𝑓(𝑒1,𝑒2)≀(𝑀𝑅)π‘βˆ’1, for 0≀𝑒2≀𝑅,0≀𝑒1≀𝐻,where π‘šβˆˆ(πœƒβˆ—,∞),π‘€βˆˆ(0,πœƒβˆ—βˆ—). Then, the SBVP (2.9), (2.13) has a solution 𝑒 such that ‖𝑒‖ lies between π‘Ÿ and 𝑅. Furthermore by Lemma 2.4, 𝑒(𝑑)=𝑒(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.2. Suppose that condition (𝐻1),(𝐻2),(𝐻3),(𝐻4) hold. Assume that 𝑓 also satisfies(π΄ξ…ž3)βˆΆπ‘“0=πœ‘βˆˆ[0,(πœƒβˆ—βˆ—/4)π‘βˆ’1), (π΄ξ…ž4):π‘“βˆž=πœ†βˆˆ((2πœƒβˆ—/πœƒ)π‘βˆ’1,∞). Then, the SBVP (2.9), (2.13) has a solution 𝑒 which is bounded in β€–β‹…β€–. Furthermore by Lemma 2.4, 𝑒(𝑑)=𝑒(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.3. Suppose that condition (𝐻1),(𝐻2),(𝐻3),(𝐻4) hold. Assume that 𝑓 also satisfies(π΄ξ…ž5):π‘“βˆž=πœ†βˆˆ[0,(πœƒβˆ—βˆ—/4)π‘βˆ’1), (π΄ξ…ž6):𝑓0=πœ‘βˆˆ((2πœƒβˆ—/πœƒ)π‘βˆ’1,∞). Then, the SBVP (2.9), (2.13) has a solution 𝑒 which is bounded in β€–β‹…β€–. Furthermore by Lemma 2.4, 𝑒(𝑑)=𝑒(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.4. Suppose that conditions (𝐻1),(𝐻2),(𝐻3),(𝐻4) and (π΄ξ…ž2) in Theorem 5.1 hold. Assume that 𝑓 also satisfies(π΄ξ…ž7):𝑓0=+∞, (π΄ξ…ž8):π‘“βˆž=+∞. Then, the SBVP (2.9), (2.13) has at least two solutions 𝑒1, 𝑒2 such that ‖‖𝑒0<1‖‖‖‖𝑒<𝑅<2β€–β€–.(5.1) Furthermore by Lemma 2.4, 𝑒1(𝑑)=𝑒1(𝑑)+β„Ž(𝑑),𝑒2(𝑑)=𝑒2(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.5. Suppose that conditions (𝐻1),(𝐻2),(𝐻3),(𝐻4) and (π΄ξ…ž1) in Theorem 5.1 hold. Assume that 𝑓 also satisfies(π΄ξ…ž9):𝑓0=0, (π΄ξ…ž10):π‘“βˆž=0. Then, the SBVP (2.9), (2.13) has at least two solutions 𝑒1, 𝑒2 such that 0<‖𝑒1β€–<π‘Ÿ<‖𝑒2β€–. Furthermore by Lemma 2.4, 𝑒1(𝑑)=𝑒1(𝑑)+β„Ž(𝑑),𝑒2(𝑑)=𝑒2(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.6. Suppose that conditions (𝐻1),(𝐻2),(𝐻3),(𝐻4) and (𝐴2) in Theorem 5.1, (𝐴4) in Theorem 5.2 and (π΄ξ…ž6) in Theorem 3.3 hold. Then, the SBVP (2.9), (2.13) has at least two solutions 𝑒1,𝑒2 such that 0<‖𝑒1β€–<𝑅<‖𝑒2β€–. Furthermore by Lemma 2.4, 𝑒1(𝑑)=𝑒1(𝑑)+β„Ž(𝑑),𝑒2(𝑑)=𝑒2(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

Theorem 5.7. Suppose that conditions (𝐻1),(𝐻2),(𝐻3),(𝐻4) and (π΄ξ…ž1) in Theorem 5.1, (π΄ξ…ž3) in Theorem 5.2 and (π΄ξ…ž5) in Theorem 3.3 hold. Then, the SBVP (2.9), (2.13) has at least two solutions 𝑒1,𝑒2 such that 0<‖𝑒1β€–<π‘Ÿ<‖𝑒2β€–. Furthermore by Lemma 2.4, 𝑒1(𝑑)=𝑒1(𝑑)+β„Ž(𝑑),𝑒2(𝑑)=𝑒2(𝑑)+β„Ž(𝑑), βˆ’πœβ‰€π‘‘β‰€π‘‡ is a positive solution to the SBVP (1.8), (1.10).

6. Application

In the section, we present two simple examples to explain our result.

Example 6.1. Let 𝐓={1βˆ’(1/2)𝐍}βˆͺ{1}, where 𝐍 denotes the set of all nonnegative integers. Consider the following 3-order singular boundary value problem (SBVP) with 𝑝-Laplacian ξ€·πœ™π‘ξ€·π‘’Ξ”ξ€Έξ€Έβˆ‡1(𝑑)+𝑑20βˆ’1/2𝑒1/2ξ‚Έ1(𝑑)β‹…5+(94/5)𝑒2𝑒(𝑑)120𝑒(π‘‘βˆ’1)+7𝑒𝑒(𝑑)+𝑒2𝑒(𝑑)𝑒=0,0<𝑑<1,(𝑑)=𝑑2πœ™βˆ’1,βˆ’1≀𝑑≀0,𝑝(𝑒(0))βˆ’πœ™π‘ξ‚€π‘’Ξ”ξ‚€14=0,πœ™π‘(𝑒(1))+π›Ώπœ™π‘ξ‚€π‘’Ξ”ξ‚€12=0,(6.1) where 3𝛼=𝛾=1,𝛽=1,𝑝=21,𝛿β‰₯0,πœ‰=41,πœ‚=21,πœƒ=4,𝜏=𝑇=1.(6.2) So, by Lemma 2.4, we discuss the following SBVP: ξ€·πœ™π‘ξ€·π‘’Ξ”ξ€Έξ€Έβˆ‡1(𝑑)+𝑑20βˆ’1/2𝑒1/2ξ‚Έ1(𝑑)β‹…5+(94/5)𝑒2𝑒(𝑑)[𝑒]120(π‘‘βˆ’1)+β„Ž(π‘‘βˆ’1)+7𝑒𝑒(𝑑)+𝑒2𝑒(𝑑)ξ‚Ήπœ™=0,0<𝑑<1,𝑒(𝑑)=0,βˆ’1≀𝑑≀0,𝑝(𝑒(0))βˆ’πœ™π‘ξ‚€π‘’Ξ”ξ‚€14=0,πœ™π‘(𝑒(1))+π›Ώπœ™π‘ξ‚€π‘’Ξ”ξ‚€12=0,(6.3) where ξ‚»π‘‘β„Ž(𝑑)=21βˆ’1,βˆ’1≀𝑑≀0,0,0≀𝑑≀1,𝑔(𝑑)=𝑑20βˆ’1/2,𝜁(𝑑)=𝑑2π‘“ξ€·π‘’βˆ’1,1,𝑒2ξ€Έ=𝑒2ξ€Έ1/2ξ‚Έ15+(94/5)𝑒2𝑒2120𝑒1+7𝑒𝑒2+𝑒2𝑒2ξ‚Ή.(6.4) Then obviously, π‘ž=3,𝐻=maxβˆ’1≀𝑑≀0||||𝜁(𝑑)=1,𝑓0=πœ‘=lim𝑒2β†’0+max0≀𝑒1≀1𝑓𝑒1,𝑒2𝑒2π‘βˆ’1=51,𝑓20∞=πœ†=lim𝑒2β†’βˆžmin0≀𝑒1≀1𝑓𝑒1,𝑒2𝑒2π‘βˆ’1=955,ξ€œπ‘‡01𝑔(𝑑)βˆ‡π‘‘=,10(6.5) so conditions (𝐻1),(𝐻2),(𝐻3) hold.
Next, πœƒβˆ—=1𝑇+πœ™π‘žξ€Έπœ™(𝛽/𝛼)π‘žξ‚€βˆ«π‘‡0𝑔(π‘Ÿ)βˆ‡π‘Ÿ=50,(6.6) then (πœƒβˆ—/4)π‘βˆ’1√=52/2>51/20, that is, πœ‘βˆˆ[0,(πœƒβˆ—/4)π‘βˆ’1), so condition (𝐴3) holds.
For πœƒ=1/4, it is easy to see by calculating that 𝐿=minπ‘‘βˆˆ[πœƒ,π‘‡βˆ’πœƒ]1𝐴(𝑑)=716+√3633ξƒͺ.(6.7) Because of ξ‚΅2πœƒβˆ—πœƒξ‚Άπ‘βˆ’11=96Γ—βˆš7+123ξƒͺ1/2<955,(6.8) then ξƒ©ξ‚΅πœ†βˆˆ2πœƒβˆ—πœƒξ‚Άπ‘βˆ’1ξƒͺ,,∞(6.9) so condition (𝐴4) holds. Then by Theorem 3.2, SBVP (6.3) has at least a positive solution 𝑒(𝑑). So, 𝑒(𝑑)=𝑒(𝑑)+β„Ž(𝑑),βˆ’1<𝑑<1 is the positive solution of SBVP (6.1).

Example 6.2. Consider the following 3-order singular boundary value problem (SBVP) with 𝑝-Laplacian: ξ€·πœ™π‘ξ€·π‘’Ξ”ξ€Έξ€Έβˆ‡1(𝑑)+64πœ‹4π‘‘βˆ’1/2ξ€Ί(1βˆ’π‘‘)𝑒(π‘‘βˆ’1)+𝑒2(𝑑)+𝑒4𝑒(𝑑)=0,0<𝑑<1,(𝑑)=βˆ’π‘‘π‘’π‘‘,βˆ’1≀𝑑≀0,2πœ™π‘(𝑒(0))βˆ’πœ™π‘ξ‚€π‘’Ξ”ξ‚€14=0,πœ™π‘(𝑒(1))+π›Ώπœ™π‘ξ‚€π‘’Ξ”ξ‚€12=0,(6.10) where 1𝛽=𝛾=1,𝛼=2,𝑝=4,𝛿β‰₯0,𝑝=4,πœ‰=41,πœ‚=3,1πœƒ=4,𝜏=𝑇=1.(6.11) So, by Lemma 2.4, we discuss the following SBVP: ξ€·πœ™π‘ξ€·π‘’Ξ”ξ€Έξ€Έβˆ‡1(𝑑)+64πœ‹4π‘‘βˆ’1/2ξ€Ί[](1βˆ’π‘‘)𝑒(π‘‘βˆ’1)+β„Ž(π‘‘βˆ’1)+𝑒2(𝑑)+𝑒4ξ€»(𝑑)=0,0<𝑑<1,𝑒(𝑑)=0,βˆ’1≀𝑑≀0,2πœ™π‘(𝑒(0))βˆ’πœ™π‘ξ‚€π‘’Ξ”ξ‚€14=0,πœ™π‘(𝑒(1))+π›Ώπœ™π‘ξ‚€π‘’Ξ”ξ‚€12=0,(6.12) where ξ‚»β„Ž(𝑑)=𝜁(𝑑),βˆ’1≀𝑑≀0,0,0≀𝑑≀1,𝜁(𝑑)=βˆ’π‘‘π‘’π‘‘,1𝑔(𝑑)=64πœ‹4π‘‘βˆ’1/2𝑒(1βˆ’π‘‘),𝑓1,𝑒2ξ€Έ=𝑒1+𝑒22+𝑒42.(6.13) Then obviously, 4π‘ž=3,ξ€œ101𝑔(𝑑)βˆ‡π‘‘=64πœ‹3,𝐻=maxβˆ’1≀𝑑≀0||||𝜁(𝑑)=𝑒,π‘“βˆž=+∞,𝑓0=+∞,(6.14) so conditions (𝐻1),(𝐻2),(𝐻3),(𝐴7),(𝐴8) hold.
Next, πœ™π‘žξ‚΅ξ€œ10ξ‚Ά=1π‘Ž(𝑑)βˆ‡π‘‘4πœ‹,πœƒβˆ—=4πœ‹1+3√4,(6.15) we choose 𝑅=3,𝑀=2, and for πœƒ=1/4, because of the monotone increasing of 𝑓(𝑒1, 𝑒2, 𝑒3) on [0,∞)3, then 𝑓𝑒1,𝑒2≀𝑓(𝑒,3)=𝑒+90,0≀𝑒2≀3,0≀𝑒1≀𝑒.(6.16) Therefore, by ξ€·π‘€βˆˆ0,πœƒβˆ—ξ€Έ,(𝑀𝑅)π‘βˆ’1=(6)3=216,(6.17) we know that 𝑓𝑒1,𝑒2,𝑒3≀(𝑀𝑅)π‘βˆ’1,0≀𝑒2≀3,0≀𝑒1≀𝑒,(6.18) so condition (𝐴2) holds. Then by Theorem 4.1, SBVP (6.12) has at least two positive solutions 𝑣1,𝑣2 and 0<‖𝑣1β€–<3<‖𝑣2β€–. Then, by Lemma 2.4, 𝑣1(𝑑)=𝑣1(𝑑)+β„Ž(𝑑),𝑣2(𝑑)=𝑣2(𝑑)+β„Ž(𝑑),π‘‘βˆˆ(βˆ’1,1) are the positive solutions of the SBVP (6.10).

Acknowledgments

The first the second authors were supported financially by Shandong Province Natural Science Foundation (ZR2009AQ004), NSFC (11026108, 11071141), and the third author was supported by Shandong Province planning Foundation of Social Science (09BJGJ14), and Shandong Province Natural Science Foundation (Z2007A04).