Abstract

We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

1. Introduction

It is well known that the investigation of differential difference equations (DDEs) which describe many important phenomena and dynamical processes in many different fields, such as particle vibrations in lattices, currents in electrical networks, pulses in biological chains, and many others, has played an important role in the study of modern physics. Unlike difference equations which are fully discredited, DDEs are semidiscredited with some (or all) of their special variables discredited, while time is usually kept continuous. DDEs also play an important role in numerical simulations of nonlinear partial differential equations (NLPDEs), queuing problems, and discretization in solid state and quantum physics.

Since the work of Fermi et al. in the 1960s [1], DDEs have been the focus of many nonlinear studies. On the other hand, a considerable number of well-known analytic methods are successfully extended to nonlinear DDEs by researchers [2–17]. However, no method obeys the strength and the flexibility for finding all solutions to all types of nonlinear DDEs. Zhang et al. [18] and Aslan [19] used the (πΊξ…ž/𝐺)-expansion method in some physically important nonlinear DDEs. Xu and Li [12] constructed the Jacobi elliptic solutions for nonlinear DDEs. Recently, S. Zhang and H.-Q. Zhang [20] and Gepreel [21] have used the Jacobi elliptic function method for constructing new and more general Jacobi elliptic function solutions of the integral discrete nonlinear SchrΓΆdinger equation. The main objective of this paper is to put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear DDEs. We use this method to calculate the exact wave solutions for some nonlinear DDEs in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity.

2. Description of the Rational Jacobi Elliptic Functions Method

In this section, we would like to outline an algorithm for using the rational Jacobi elliptic functions method to solve nonlinear DDEs. For a given nonlinear DDEsΔ𝑒𝑛+𝑝1(π‘₯),…,𝑒𝑛+π‘π‘˜(π‘₯),π‘’ξ…žπ‘›+𝑝1(π‘₯),…,π‘’ξ…žπ‘›+π‘π‘˜(π‘₯),…,𝑒(π‘Ÿ)𝑛+𝑝1(π‘₯),…,𝑒(π‘Ÿ)𝑛+π‘π‘˜π‘£(π‘₯),𝑛+𝑝1(π‘₯),…,𝑣𝑛+π‘π‘˜(π‘₯),π‘£ξ…žπ‘›+𝑝1(π‘₯),…,π‘£ξ…žπ‘›+π‘π‘˜(π‘₯),…,𝑣(π‘Ÿ)𝑛+𝑝1(π‘₯),…,𝑣(π‘Ÿ)𝑛+π‘π‘˜ξ‚(π‘₯),….=0,(2.1) where Ξ”=(Ξ”1,…,Δ𝑔), π‘₯=(π‘₯1,π‘₯2,…,π‘₯π‘š), 𝑛=(𝑛1,…,𝑛𝑄), and 𝑔,π‘š,𝑄,𝑝1,…,π‘π‘˜ are integers, 𝑒𝑖(π‘Ÿ), 𝑣𝑖(π‘Ÿ) denotes the set of all π‘Ÿth order derivatives of 𝑒𝑖,𝑣𝑖 with respect to π‘₯.

The main steps of the algorithm for the rational Jacobi elliptic functions method to solve nonlinear DDEs are outlined as follows.

Step 1. We seek the traveling wave solutions of the following form: π‘’π‘›ξ€·πœ‰(π‘₯)=π‘ˆπ‘›ξ€Έ,π‘£π‘›ξ€·πœ‰(π‘₯)=𝑉𝑛,…,(2.2) where πœ‰π‘›=𝑄𝑖=1𝑑𝑖𝑛𝑖+π‘šξ“π‘—=1𝑐𝑗π‘₯𝑗+πœ‰0,(2.3)𝑑𝑖(𝑖=1,…,𝑄), 𝑐𝑗, (𝑗=1,…,π‘š), and the phase πœ‰0 are constants to be determined later. The transformations in (2.2) are reduced (2.1) to the following ordinary differential difference equations Ξ©ξ‚€π‘ˆξ€·πœ‰π‘›+𝑝1ξ€Έξ€·πœ‰,…,π‘ˆπ‘›+π‘π‘˜ξ€Έ,π‘ˆξ…žξ€·πœ‰π‘›+𝑝1ξ€Έ,…,π‘ˆξ…žξ€·πœ‰π‘›+π‘π‘˜ξ€Έ,…,π‘ˆ(π‘Ÿ)ξ€·πœ‰π‘›+𝑝1ξ€Έ,…,π‘ˆ(π‘Ÿ)ξ€·πœ‰π‘›+π‘π‘˜ξ€Έ,π‘‰ξ€·πœ‰π‘›+𝑝1ξ€Έξ€·πœ‰,…,𝑉𝑛+π‘π‘˜ξ€Έ,π‘‰ξ…žξ€·πœ‰π‘›+𝑝1ξ€Έ,…,π‘‰ξ…žξ€·πœ‰π‘›+π‘π‘˜ξ€Έ,…,𝑉(π‘Ÿ)𝑛+𝑝1ξ€·πœ‰π‘›+𝑝1ξ€Έ,…,𝑉(π‘Ÿ)𝑛+π‘π‘˜ξ€·πœ‰π‘›+π‘π‘˜ξ€Έξ‚,…=0,(2.4) where Ξ©=(Ξ©1,…,Ω𝑔). The transformations in (2.2) help in the calculation of the iteration relations between 𝑒𝑛(π‘₯), π‘’π‘›βˆ’1(π‘₯), and 𝑒𝑛+1(π‘₯). For example, Langmuir chains equation 𝑑𝑒𝑛(𝑑)/𝑑𝑑=𝑒𝑛(𝑑)(𝑒𝑛+1(𝑑)βˆ’π‘’π‘›βˆ’1(𝑑)) under the wave transformation 𝑒𝑛(𝑑)=π‘ˆ(πœ‰π‘›), πœ‰π‘›=𝑑𝑛+𝑐𝑑+πœ‰0 takes the form π‘π‘ˆξ…ž(πœ‰π‘›)=π‘ˆ(πœ‰π‘›)(π‘ˆ(πœ‰π‘›+𝑑)βˆ’π‘ˆ(πœ‰π‘›βˆ’π‘‘)).

Step 2. We suppose the rational series expansion solutions of (2.4) in the following form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©πΉξ…žξ€·πœ‰π‘›ξ€ΈπΉξ€·πœ‰π‘›ξ€Έξƒͺπ‘–ξ€·πœ‰,𝑉𝑛=𝐿𝑖=0π›½π‘–ξƒ©πΉξ…žξ€·πœ‰π‘›ξ€ΈπΉξ€·πœ‰π‘›ξ€Έξƒͺ𝑖,…,(2.5) where 𝛼𝑖(𝑖=0,1,…,𝐾), and 𝛽𝑖(𝑖=0,1,…,𝐿) are constants to be determined later, and 𝐹(πœ‰π‘›) satisfies a discrete Jacobi elliptic differential equation 𝐹′2ξ€·πœ‰π‘›ξ€Έ=𝑒0+𝑒1𝐹2ξ€·πœ‰π‘›ξ€Έ+𝑒2𝐹4ξ€·πœ‰π‘›ξ€Έ,(2.6) where 𝑒0, 𝑒1, and 𝑒2 are arbitrary constants.

Step 3. Since the general solution of the proposed (2.6) is difficult to obtain and so the iteration relations corresponding to the general exact solutions. So that we discuss the solutions of the proposed discrete Jacobi elliptic differential equation (2.6) at some special cases to 𝑒0, 𝑒1 and 𝑒2 to cover all the Jacobi elliptic functions as follows:

Type 1. if 𝑒0=1, 𝑒1=βˆ’(1+π‘š2), 𝑒2=π‘š2. In this case (2.6) has the solution 𝐹(πœ‰π‘›)=𝑠𝑛(πœ‰π‘›,π‘š), where 𝑠𝑛(πœ‰π‘›,π‘š) is the Jacobi elliptic sine function, and π‘š is the modulus.
The Jacobi elliptic functions satisfy the following properties: ξ€Ίξ€·πœ‰π‘ π‘›π‘›,π‘šξ€Έξ€»ξ…žξ€·πœ‰=π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,ξ€Ίξ€·πœ‰,π‘šπ‘π‘›π‘›,π‘šξ€Έξ€»ξ…žξ€·πœ‰=βˆ’π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,ξ€Ίξ€·πœ‰,π‘šπ‘‘π‘›π‘›,π‘šξ€Έξ€»ξ…ž=βˆ’π‘š2ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έ,ξ€Ίξ€·πœ‰,π‘šπ‘π‘ π‘›,π‘šξ€Έξ€»ξ…žξ€·πœ‰=βˆ’π‘›π‘ π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘ π‘›ξ€Έ,ξ€Ίξ€·πœ‰,π‘šπ‘ π‘‘π‘›,π‘šξ€Έξ€»ξ…žξ€·πœ‰=βˆ’π‘›π‘‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘ π‘›ξ€Έ,ξ€Ίξ€·πœ‰,π‘šπ‘‘π‘π‘›,π‘šξ€Έξ€»ξ…ž=ξ€·1βˆ’π‘š2ξ€Έξ€·πœ‰π‘›π‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘ π‘π‘›ξ€Έ,,π‘š(2.7) where 𝑐𝑛(πœ‰π‘›,π‘š), and 𝑑𝑛(πœ‰π‘›,π‘š) are the Jacobi elliptic cosine function, and the Jacobi elliptic function of the third kind. The other Jacobi elliptic functions can be generated by 𝑠𝑛(πœ‰π‘›,π‘š), 𝑐𝑛(πœ‰π‘›,π‘š), and 𝑑𝑛(πœ‰π‘›,π‘š) as follows: ξ€·πœ‰π‘π‘‘π‘›ξ€Έ=ξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘‘π‘›π‘›ξ€Έξ€·πœ‰,π‘š,𝑑𝑐𝑛=ξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘š,𝑛𝑐𝑛=1,π‘šξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘š,𝑛𝑑𝑛=1,π‘šξ€·πœ‰π‘‘π‘›π‘›ξ€Έ,ξ€·πœ‰,π‘šπ‘π‘ π‘›ξ€Έ=ξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘š,𝑠𝑐𝑛=ξ€·πœ‰,π‘šπ‘ π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘š,𝑠𝑑(πœ‰)=𝑠𝑛𝑛,π‘šξ€·πœ‰π‘‘π‘›π‘›ξ€Έξ€·πœ‰,π‘š,𝑑𝑠𝑛=ξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έ,ξ€·πœ‰,π‘š(2.8)𝑠𝑛1Β±πœ‰2ξ€Έ=,π‘šsnξ€·πœ‰1ξ€Έ,π‘šcnξ€·πœ‰2ξ€Έ,π‘šdnξ€·πœ‰2ξ€ΈΒ±,π‘šsnξ€·πœ‰2ξ€Έ,π‘šcnξ€·πœ‰1ξ€Έ,π‘šdnξ€·πœ‰1ξ€Έ,π‘š1βˆ’π‘š2sn2ξ€·πœ‰1ξ€Έ,π‘šsn2ξ€·πœ‰2ξ€Έ,ξ€·πœ‰,π‘šπ‘π‘›1Β±πœ‰2ξ€Έ=ξ€·πœ‰,π‘šπ‘π‘›1ξ€Έξ€·πœ‰,π‘šπ‘π‘›2ξ€Έξ€·πœ‰,π‘šβˆ“π‘ π‘›1ξ€Έξ€·πœ‰,π‘šπ‘ π‘›2ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›1ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›2ξ€Έ,π‘š1βˆ’π‘š2sn2ξ€·πœ‰1ξ€Έ,π‘šsn2ξ€·πœ‰2ξ€Έ,ξ€·πœ‰,π‘šπ‘‘π‘›1Β±πœ‰2ξ€Έ=ξ€·πœ‰,π‘šπ‘‘π‘›1ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›2ξ€Έβˆ“,π‘šsnξ€·πœ‰1ξ€Έξ€·πœ‰,π‘šπ‘ π‘›2ξ€Έξ€·πœ‰,π‘šπ‘π‘›1ξ€Έξ€·πœ‰,π‘šπ‘π‘›2ξ€Έ,π‘š1βˆ’π‘š2sn2ξ€·πœ‰1ξ€Έ,π‘šsn2ξ€·πœ‰2ξ€Έ.,π‘š(2.9) In this case from using the properties of Jacobi elliptic functions, the series expansion solutions (2.5) take the following form π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©ξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,π‘‰ξ€·πœ‰π‘›ξ€Έ=𝐿𝑖=0π›½π‘–ξƒ©ξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,….(2.10) Further by using the properties of Jacobi elliptic functions, the iterative relations can be written in the following form: π‘ˆξ€·πœ‰π‘›Β±π‘ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©πΉξ…žξ€·πœ‰π‘›Β±π‘ξ€ΈπΉξ€·πœ‰π‘›Β±π‘ξ€Έξƒͺ𝑖,π‘‰ξ€·πœ‰π‘›Β±π‘ξ€Έ=𝐿𝑖=0π›½π‘–ξƒ©πΉξ…žξ€·πœ‰π‘›Β±π‘ξ€ΈπΉξ€·πœ‰π‘›Β±π‘ξ€Έξƒͺ𝑖,…,(2.11) where πΉξ…žξ€·πœ‰π‘›Β±π‘‘ξ€ΈπΉξ€·πœ‰π‘›Β±π‘‘ξ€Έ=1𝑀1ξ€½ξ€·πœ‰Β±π‘π‘›(𝑑,π‘š)π‘π‘›π‘›ξ€Έξ€·πœ‰π‘‘π‘›π‘›ξ€Έ,π‘šπ‘‘π‘›(𝑑,π‘š)Β±π‘š2ξ€·πœ‰π‘ π‘›(𝑑,π‘š)𝑠𝑛𝑛,π‘šβˆ“2π‘š2𝑠𝑛(𝑑,π‘š)𝑠𝑛3ξ€·πœ‰π‘›ξ€Έ,π‘šβˆ“2π‘š2𝑠𝑛3ξ€·πœ‰(𝑑,π‘š)𝑠𝑛𝑛,π‘šΒ±π‘š2𝑠𝑛3(𝑑,π‘š)𝑠𝑛3ξ€·πœ‰π‘›ξ€Έξ€·πœ‰,π‘š+𝑠𝑛(𝑑,π‘š)𝑠𝑛𝑛,π‘šΒ±π‘š4𝑠𝑛3(𝑑,π‘š)𝑠𝑛3ξ€·πœ‰π‘›ξ€Έ,π‘šβˆ“π‘š2𝑠𝑛2(𝑑,π‘š)𝑠𝑛2ξ€·πœ‰π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›(𝑑,π‘š)𝑐𝑛(𝑑,π‘š)𝑐𝑛𝑛,𝑀,π‘šξ€Έξ€Ύ(2.12)1ξ€·πœ‰=βˆ’π‘π‘›(πœ™,π‘š)𝑑𝑛(πœ™,π‘š)π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šβˆ“π‘ π‘›(πœ™,π‘š)π‘‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έ,π‘š+π‘š2𝑠𝑛3ξ€·πœ‰π‘›ξ€Έ,π‘šΓ—π‘ π‘›2(πœ™,π‘š)𝑐𝑛(πœ™,π‘š)𝑑𝑛(πœ™,π‘š)Β±π‘š2𝑠𝑛2ξ€·πœ‰π‘›ξ€Έ,π‘šπ‘ π‘›3ξ€·πœ‰(πœ™,π‘š)π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,,π‘š(2.13)𝑑=𝑝𝑠1𝑑1+𝑝𝑠2𝑑2+β‹―+𝑝𝑠𝑄𝑑𝑄, 𝑝𝑠𝑗 is the 𝑗th component of shift vector 𝑝𝑠.

Type 2. if 𝑒0=1βˆ’π‘š2, 𝑒1=2π‘š2βˆ’1, 𝑒2=βˆ’π‘š2. In this case, (2.6) has the solution 𝐹(πœ‰π‘›)=𝑐𝑛(πœ‰π‘›,π‘š). From using the properties of Jacobi elliptic functions, the series expansion solutions (2.5) take the following formπ‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©βˆ’ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,π‘‰ξ€·πœ‰π‘›ξ€Έ=𝐿𝑖=0π›½π‘–ξƒ©βˆ’ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,….(2.14)

Type 3. if 𝑒0=π‘š2βˆ’1, 𝑒1=2βˆ’π‘š2, 𝑒2=βˆ’1. In this case, (2.6) has the solution 𝐹(πœ‰π‘›)=𝑑𝑛(πœ‰π‘›,π‘š). From using the properties of Jacobi elliptic functions the series expansion solutions (2.5) take the following form π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©βˆ’π‘š2ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,π‘‰ξ€·πœ‰π‘›ξ€Έ=𝐿𝑖=0π›½π‘–ξƒ©βˆ’π‘š2ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,….(2.15)

Type 4. if 𝑒0=1βˆ’π‘š2, 𝑒1=2βˆ’π‘š2, 𝑒2=1. In this case, (2.6) has the solution 𝐹(πœ‰π‘›)=𝑐𝑠(πœ‰π‘›,π‘š), then the series expansion solutions (2.5) take the following form π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©βˆ’ξ€·πœ‰π‘›π‘ π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘ π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘ π‘›ξ€Έξƒͺ,π‘šπ‘–ξ€·πœ‰,𝑉𝑛=𝐿𝑖=0π›½π‘–ξƒ©βˆ’ξ€·πœ‰π‘›π‘ π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘ π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘ π‘›ξ€Έξƒͺ,π‘šπ‘–,….(2.16) Equation (2.16) can be written in the following form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©βˆ’ξ€·πœ‰π‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–ξ€·πœ‰,𝑉𝑛=𝐿𝑖=0π›½π‘–ξƒ©βˆ’ξ€·πœ‰π‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,….(2.17)

Type 5. if 𝑒0=1, 𝑒1=2π‘š2βˆ’1, and 𝑒2=π‘š2(π‘š2βˆ’1). In this case, (2.6) has the solution 𝐹(πœ‰π‘›)=𝑠𝑑(πœ‰π‘›,π‘š), then the series expansion solutions (2.5) take the following form π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©ξ€·πœ‰π‘›π‘‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘‘π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘‘π‘›ξ€Έξƒͺ,π‘šπ‘–ξ€·πœ‰,𝑉𝑛=𝐿𝑖=0π›½π‘–ξƒ©ξ€·πœ‰π‘›π‘‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘‘π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘‘π‘›ξ€Έξƒͺ,π‘šπ‘–,…(2.18) Equation (2.18) can be written in the following form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0π›Όπ‘–ξƒ©ξ€·πœ‰π‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–ξ€·πœ‰,𝑉𝑛=𝐿𝑖=0π›½π‘–ξƒ©ξ€·πœ‰π‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,…(2.19)

Type 6. if 𝑒0=π‘š2, 𝑒1=βˆ’(π‘š2+1), and 𝑒2=1. In this case, (2.6) has the solution 𝐹(πœ‰π‘›)=𝑑𝑐(πœ‰π‘›,π‘š), then the series expansion solutions (2.5) take the following form π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0𝛼𝑖1βˆ’π‘š2ξ€Έξ€·πœ‰π‘›π‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘ π‘π‘›ξ€Έ,π‘šξ€·πœ‰π‘‘π‘π‘›ξ€Έξƒͺ,π‘šπ‘–,π‘‰ξ€·πœ‰π‘›ξ€Έ=𝐿𝑖=0𝛽𝑖1βˆ’π‘š2ξ€Έξ€·πœ‰π‘›π‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘ π‘π‘›ξ€Έ,π‘šξ€·πœ‰π‘‘π‘π‘›ξ€Έξƒͺ,π‘šπ‘–,….(2.20) Equation (2.20) can be written in the following form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝐾𝑖=0𝛼𝑖1βˆ’π‘š2ξ€Έξ€·πœ‰π‘ π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,π‘‰π‘›ξ€·πœ‰π‘›ξ€Έ=𝐿𝑖=0𝛽𝑖1βˆ’π‘š2ξ€Έξ€·πœ‰π‘ π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έξƒͺ,π‘šπ‘–,….(2.21) From the properties of the Jacobi elliptic functions, we can deduce the iterative relation to the above kind of solutions from Types 2βˆ’6 as we show in Type 1.
Equations (2.10)–(2.21) lead to getting all formulas of solutions from Types 1–6 as different. Consequently, we will discuss all solutions from Types 1–6.

Step 4. Determine the degree 𝐾,𝐿,… of (2.5) by balancing the nonlinear term(s) and the highest-order derivatives of π‘ˆ(πœ‰π‘›), 𝑉(πœ‰π‘›),…   in (2.4). It should be noted that the leading terms π‘ˆ(πœ‰π‘›Β±π‘), 𝑉(πœ‰π‘›Β±π‘), …, 𝑝≠0will not affect the balance because we are interested in balancing the terms of πΉξ…ž(πœ‰π‘›)/𝐹(πœ‰π‘›).

Step 5. Substituting π‘ˆ(πœ‰π‘›), 𝑉(πœ‰π‘›), and … in each type form 1–6 and the given values of 𝐾, 𝐿, and … into (2.4). Cleaning the denominator and collecting all terms with the same degree of 𝑠𝑛(πœ‰π‘›,π‘š), 𝑑𝑛(πœ‰π‘›,π‘š), and 𝑐𝑛(πœ‰π‘›,π‘š) together, the left hand side of (2.4) is converted into a polynomial in 𝑠𝑛(πœ‰π‘›,π‘š), 𝑑𝑛(πœ‰π‘›,π‘š), and 𝑐𝑛(πœ‰π‘›,π‘š). Setting each coefficient of this polynomial to zero, we derive a set of algebraic equations for 𝛼𝑖, 𝛽𝑖, 𝑑𝑖, and 𝑐𝑖.

Step 6. Solving the over determined system of nonlinear algebraic equations by using Maple or Mathematica. We end up with explicit expressions for 𝛼𝑖, 𝛽𝑖, 𝑑𝑖, and 𝑐𝑗.

Step 7. Substituting 𝛼𝑖, 𝛽𝑖, 𝑑𝑖, and 𝑐𝑖 into π‘ˆ(πœ‰π‘›), 𝑉(πœ‰π‘›), and … in the corresponding type from 1–6, we can finally obtain the exact solutions for (2.1).

3. Applications

In this section, we apply the proposed rational Jacobi elliptic functions method to construct the traveling wave solutions for some nonlinear DDEs via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity which are very important in the mathematical physics and have been paid attention to by many researchers.

3.1. Example  1. The Lattice Equation

In this section, we study the lattice equation which takes the following form [22–25]𝑑𝑒𝑛(𝑑)=𝑑𝑑𝛼+𝛽𝑒𝑛+𝛾𝑒2π‘›π‘’ξ€Έξ€·π‘›βˆ’1βˆ’π‘’π‘›+1ξ€Έ,(3.1) where 𝛼, 𝛽, and 𝛾 are nonzero constants. The equation contains hybrid lattice equation, mKdV lattice equation, modified Volterra lattice equation, and Langmuir chain equation:(i)(1+1) dimensional Hybrid lattice equation [25]: 𝑑𝑒𝑛(𝑑)=𝑑𝑑1+𝛽𝑒𝑛+𝛾𝑒2π‘›π‘’ξ€Έξ€·π‘›βˆ’1βˆ’π‘’π‘›+1ξ€Έ;(3.2)(ii)mKdV lattice equation [25]: 𝑑𝑒𝑛(𝑑)=ξ€·π‘‘π‘‘π›Όβˆ’π‘’2π‘›π‘’ξ€Έξ€·π‘›βˆ’1βˆ’π‘’π‘›+1ξ€Έ;(3.3)(iii)modified Volterra equation [24]: 𝑑𝑒𝑛(𝑑)𝑑𝑑=𝑒2π‘›ξ€·π‘’π‘›βˆ’1βˆ’π‘’π‘›+1ξ€Έ;(3.4)(iv)Langmuir chain equation [25]: 𝑑𝑒𝑛(𝑑)𝑑𝑑=𝑒𝑛𝑒𝑛+1βˆ’π‘’π‘›βˆ’1ξ€Έ.(3.5)

According to the above steps, to seek traveling wave solutions of (3.1), we construct the transformationπ‘’π‘›ξ€·πœ‰(𝑑)=π‘ˆπ‘›ξ€Έ,πœ‰π‘›=𝑑𝑛+𝑐1𝑑+πœ‰0,(3.6) where 𝑑, 𝑐1, and πœ‰0 are constants. The transformation in (3.6) permits us to convert (3.1) into the following form:𝑐1π‘ˆξ…žξ€·πœ‰π‘›ξ€Έ=ξ€·ξ€·πœ‰π›Ό+π›½π‘ˆπ‘›ξ€Έ+π›Ύπ‘ˆ2ξ€·πœ‰π‘›π‘ˆξ€·πœ‰ξ€Έξ€Έξ€·π‘›ξ€Έξ€·πœ‰βˆ’π‘‘βˆ’π‘ˆπ‘›+𝑑,(3.7) where ξ…ž=𝑑/π‘‘πœ‰π‘›. Considering the homogeneous balance between the highest-order derivative and the nonlinear term in (3.7), we get 𝐾=1. Thus, the solution of (3.7) has the following form:π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼1ξƒ©πΉξ…žξ€·πœ‰π‘›ξ€ΈπΉξ€·πœ‰π‘›ξ€Έξƒͺ+𝛼0,(3.8) where 𝛼0, and 𝛼1 are constants to be determined later, and 𝐹(πœ‰π‘›) satisfies a discrete Jacobi elliptic ordinary differential (2.6). When, we discuss the solutions of the Jacobi elliptic differential difference (2.6), we get the following types.

Type 1. If 𝑒0=1, 𝑒1=βˆ’(1+π‘š2), and 𝑒2=π‘š2. In this case, the series expansion solution of (3.7) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0+𝛼1ξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έ,π‘š.(3.9) With help of Maple, we substitute (3.9) and (2.12) into (3.7), cleaning the denominator and collecting all terms with the same degree of 𝑠𝑛(πœ‰π‘›,π‘š), 𝑑𝑛(πœ‰π‘›,π‘š), and 𝑐𝑛(πœ‰π‘›,π‘š) together, the left hand side of (3.7) is converted into polynomial in 𝑠𝑛(πœ‰π‘›,π‘š), 𝑑𝑛(πœ‰π‘›,π‘š), and 𝑐𝑛(πœ‰π‘›,π‘š). Setting each coefficient of this polynomial to zero, we derive a set of algebraic equations for 𝛼0, 𝛼1, 𝑑, and 𝑐1. Solving the set of algebraic equations by using Maple or Mathematica, we have 𝛼0𝛽=βˆ’2𝛾,𝛼1=βˆšπ›½2βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)2𝛾𝑐𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š),𝑐1ξ€·=βˆ’4π›Όπ›Ύβˆ’π›½2𝑠𝑛(𝑑,π‘š)2𝛾𝑐𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š).(3.10) From (3.9) and (3.10), the solution of (3.7) takes the following form: π‘ˆξ€·πœ‰π‘›ξ€Έ=βˆšπ›½2ξ€·πœ‰βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰2𝛾𝑐𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)π‘ π‘›π‘›ξ€Έβˆ’π›½,π‘š2𝛾,(3.11) where πœ‰π‘›=π‘‘π‘›βˆ’((4π›Όπ›Ύβˆ’π›½2)𝑠𝑛(𝑑,π‘š)/[2𝛾𝑐𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)])𝑑+πœ‰0.

Type 2. If 𝑒0=1βˆ’π‘š2, 𝑒1=2π‘š2βˆ’1, and 𝑒2=βˆ’π‘š2. In this case, the series expansion solution of (3.7) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0βˆ’π›Ό1ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰π‘‘π‘›π‘›ξ€Έξ€·πœ‰π‘π‘›π‘›ξ€Έ,π‘š.(3.12) With the help of Maple, we substitute (3.12) into (3.7), cleaning the denominator and collecting all terms with the same degree of 𝑠𝑛(πœ‰π‘›,π‘š),𝑑𝑛(πœ‰π‘›,π‘š), and 𝑐𝑛(πœ‰π‘›,π‘š) together, the left hand side of (3.7) is converted into polynomial in 𝑠𝑛(πœ‰π‘›,π‘š), 𝑑𝑛(πœ‰π‘›,π‘š), and 𝑐𝑛(πœ‰π‘›,π‘š). Setting each coefficient of this polynomial to zero, we derive a set of algebraic equations for 𝛼0, 𝛼1, 𝑑, and 𝑐1. Solving the set of algebraic equations by using Maple or Mathematica, we get 𝛼0𝛽=βˆ’2𝛾,𝛼1=βˆšπ›½2βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)2𝛾𝑐𝑛(𝑑,π‘š),𝑐1ξ€·=βˆ’4π›Όπ›Ύβˆ’π›½2𝑑𝑛(𝑑,π‘š)𝑠𝑛(𝑑,π‘š)2𝛾𝑐𝑛(𝑑,π‘š).(3.13) In this case the solution of (3.7) takes the following form: π‘ˆξ€·πœ‰π‘›ξ€Έπ›½=βˆ’βˆ’βˆš2𝛾𝛽2ξ€·πœ‰βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰2𝛾𝑐𝑛(𝑑,π‘š)𝑐𝑛𝑛,π‘š,(3.14) where πœ‰π‘›=π‘‘π‘›βˆ’((4π›Όπ›Ύβˆ’π›½2)𝑑𝑛(𝑑,π‘š)𝑠𝑛(𝑑,π‘š)/[2𝛾𝑐𝑛(𝑑,π‘š)])𝑑+πœ‰0.

Type 3. if 𝑒0=π‘š2βˆ’1, 𝑒1=2βˆ’π‘š2, and 𝑒2=βˆ’1. In this case, the series expansion solution of (3.7) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0βˆ’π‘š2𝛼1ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰π‘‘π‘›π‘›ξ€Έ.(3.15) Consequently, by using Maple or Mathematica, we obtain the following results: 𝛼0𝛽=βˆ’2𝛾,𝛼1=βˆšπ›½2βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)𝑐𝑛(𝑑,π‘š)2𝛾𝑑𝑛(𝑑,π‘š),𝑐1ξ€·=βˆ’4π›Όπ›Ύβˆ’π›½2𝑐𝑛(𝑑,π‘š)𝑠𝑛(𝑑,π‘š)2𝛾𝑑𝑛(𝑑,π‘š).(3.16) In this case, the solution takes the following form: π‘ˆξ€·πœ‰π‘›ξ€Έπ›½=βˆ’βˆ’βˆš2𝛾𝛽2βˆ’4π›Όπ›Ύπ‘š2ξ€·πœ‰π‘ π‘›(𝑑,π‘š)𝑐𝑛(𝑑,π‘š)π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰2𝛾𝑑𝑛(𝑑,π‘š)𝑑𝑛𝑛,π‘š,(3.17) where πœ‰π‘›=π‘‘π‘›βˆ’((4π›Όπ›Ύβˆ’π›½2)𝑐𝑛(𝑑,π‘š)𝑠𝑛(𝑑,π‘š)/[2𝛾𝑑𝑛(𝑑,π‘š)])𝑑+πœ‰0.

Type 4. if 𝑒0=1βˆ’π‘š2, 𝑒1=2βˆ’π‘š2, and 𝑒2=1. In this case, the series expansion solution of (3.7) has the form: π‘ˆπ‘›ξ€·πœ‰π‘›ξ€Έ=𝛼0βˆ’π›Ό1ξ€·πœ‰π‘›π‘ π‘›ξ€Έξ€·πœ‰π‘‘π‘ π‘›ξ€Έξ€·πœ‰π‘π‘ π‘›ξ€Έ.(3.18) Consequently, using the Maple or Mathematica we get the following results: 𝛼0𝛽=βˆ’2𝛾,𝛼1=βˆšπ›½2βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)𝑐𝑛(𝑑,π‘š)2𝛾𝑑𝑛(𝑑,π‘š),𝑐1ξ€·=βˆ’4π›Όπ›Ύβˆ’π›½2𝑐𝑛(𝑑,π‘š)𝑠𝑛(𝑑,π‘š)2𝛾𝑑𝑛(𝑑,π‘š).(3.19) In this case, the solution of (3.7) takes the following form: π‘ˆπ‘›ξ€·πœ‰π‘›ξ€Έπ›½=βˆ’βˆ’βˆš2𝛾𝛽2ξ€·πœ‰βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)𝑐𝑛(𝑑,π‘š)π‘›π‘ π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘ π‘›ξ€Έ,π‘šξ€·πœ‰2𝛾𝑑𝑛(𝑑,π‘š)𝑐𝑠𝑛,π‘š,(3.20) where πœ‰π‘›=π‘‘π‘›βˆ’((4π›Όπ›Ύβˆ’π›½2)𝑐𝑛(𝑑,π‘š)𝑠𝑛(𝑑,π‘š)/[2𝛾𝑑𝑛(𝑑,π‘š)])𝑑+πœ‰0.

Type 5. if 𝑒0=1, 𝑒1=2π‘š2βˆ’1, and 𝑒2=π‘š2(π‘š2βˆ’1). In this case, the series expansion solution of (3.7) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0+𝛼1ξ€·πœ‰π‘›π‘‘π‘›ξ€Έξ€·πœ‰π‘π‘‘π‘›ξ€Έξ€·πœ‰π‘ π‘‘π‘›ξ€Έ.(3.21) Consequently, by using Maple or Mathematica, we get the following results: 𝛼0𝛽=βˆ’2𝛾,𝛼1=βˆšπ›½2βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)2𝛾𝑐𝑛(𝑑,π‘š),𝑐1=𝛽2ξ€Έβˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)2𝛾𝑐𝑛(𝑑,π‘š).(3.22) In this case, the solution takes of (3.7) the following form: π‘ˆξ€·πœ‰π‘›ξ€Έπ›½=βˆ’+√2𝛾𝛽2ξ€·πœ‰βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)π‘›π‘‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘‘π‘›ξ€Έ,π‘šξ€·πœ‰2𝛾𝑐𝑛(𝑑,π‘š)𝑠𝑑𝑛,π‘š,(3.23) where πœ‰π‘›=𝑑𝑛+((𝛽2βˆ’4𝛼𝛾)𝑠𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)/[2𝛾𝑐𝑛(𝑑,π‘š)])𝑑+πœ‰0.

Type 6. if 𝑒0=π‘š2, 𝑒1=βˆ’(π‘š2+1), and 𝑒2=1. In this case, the series expansion solution of (3.7) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0+ξ€·1βˆ’π‘š2𝛼1ξ€·πœ‰π‘›π‘π‘›ξ€Έξ€·πœ‰π‘ π‘π‘›ξ€Έξ€·πœ‰π‘‘π‘π‘›ξ€Έ.(3.24) Consequently, by using Maple or Mathematica, we get the following results: 𝛼0𝛽=βˆ’2𝛾,𝛼1=βˆšπ›½2βˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)2𝛾𝑐𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š),𝑐1=𝛽2ξ€Έβˆ’4𝛼𝛾𝑠𝑛(𝑑,π‘š)2𝛾𝑐𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š).(3.25) In this case, the solution of (3.7) takes the following form: π‘ˆξ€·πœ‰π‘›ξ€Έπ›½=βˆ’+√2𝛾𝛽2ξ€·βˆ’4𝛼𝛾1βˆ’π‘š2ξ€Έξ€·πœ‰π‘ π‘›(𝑑,π‘š)π‘›π‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘ π‘π‘›ξ€Έ,π‘šξ€·πœ‰2𝛾𝑑𝑛(𝑑,π‘š)𝑐𝑛(𝑑,π‘š)𝑑𝑐𝑛,π‘š,(3.26) where πœ‰π‘›=𝑑𝑛+((𝛽2βˆ’4𝛼𝛾)𝑠𝑛(𝑑,π‘š)/[2𝛾𝑐𝑛(𝑑,π‘š)𝑑𝑛(𝑑,π‘š)])𝑑+πœ‰0.

3.2. Example  2. The Discrete Nonlinear Schrodinger Equation

The discrete nonlinear Schrodinger equation (DNSE) is one of the most fundamental nonlinear lattice models [8]. It arises in nonlinear optics as a model of infinite wave guide arrays [26] and has been recently implemented to describe Bose-Einstein condensates in optical lattices. The class of DNSE model with saturable nonlinearity is also of particular interest in their own right, due to a feature first unveiled in [27]. In this section, we study the DNSE with a saturable nonlinearity [28, 29] having the formπ‘–πœ•πœ“π‘›+ξ€·πœ“πœ•π‘‘π‘›+1+πœ“π‘›βˆ’1βˆ’2πœ“π‘›ξ€Έ+𝜈||πœ“π‘›||2||πœ“1+πœ‡π‘›||2πœ“π‘›=0,(3.27) which describes optical pulse propagations in various doped fibers, πœ“π‘› is a complex valued wave function at sites 𝑛 while 𝜈 and πœ‡. We make the transformationπœ“π‘›ξ€·πœ‰=πœ™π‘›ξ€Έπ‘’βˆ’π‘–(πœŽπ‘‘+𝜌),πœ‰π‘›=𝛼𝑛+𝛽,(3.28) where 𝜎,𝜌, 𝛼, and 𝛽 are arbitrary real constants. The transformation (3.28) permits us converting (3.27) into the following nonlinear difference equationξ€·πœ‰(πœŽβˆ’2)πœ™π‘›ξ€Έξ€·πœ‰+πœ™π‘›+1ξ€Έξ€·πœ‰+πœ™π‘›βˆ’1ξ€Έ+πœˆπœ™3ξ€·πœ‰π‘›ξ€Έ1+πœ‡πœ™2ξ€·πœ‰π‘›ξ€Έ=0.(3.29) We assume that (3.29) has a solution of the form:πœ™ξ€·πœ‰π‘›ξ€Έξ€·πœ‰=π‘ˆπ‘›ξ€Έ=𝛼1ξƒ©πΉξ…žξ€·πœ‰π‘›ξ€ΈπΉξ€·πœ‰π‘›ξ€Έξƒͺ+𝛼0,(3.30) where 𝛼1, and 𝛼0 are constants to be determined later and 𝐹(πœ‰π‘›) satisfying a discrete Jacobi elliptic differential equation (2.6). When, we discuss the solutions of (2.6), we have the following types.

Type 1. If 𝑒0=1, 𝑒1=βˆ’(1+π‘š2), and 𝑒2=π‘š2. In this case, the series expansion solution of (3.29) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼1ξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘ π‘›π‘›ξ€Έ,π‘š+𝛼0.(3.31) With the help of Maple, we substitute (3.31) and (2.12) into (3.29), cleaning the denominator and collecting all terms with the same order of 𝑐𝑛(πœ‰π‘›,π‘š), 𝑑𝑛(πœ‰π‘›,π‘š), and 𝑠𝑛(πœ‰π‘›,π‘š) together, the left hand side of (3.29) is converted into polynomial in 𝑐𝑛(πœ‰π‘›,π‘š), 𝑑𝑛(πœ‰π‘›,π‘š), and 𝑠𝑛(πœ‰π‘›,π‘š). Setting each coefficient of this polynomial to zero, we derive a set of algebraic equations for 𝛼0, 𝛼1, 𝜎, 𝜌, 𝛼, and 𝛽. Solving the set of algebraic equations by using Maple or Mathematica, we obtain 𝛼0=0,𝛼1=𝑠𝑛(𝛼,π‘š)βˆšξ€·π‘šβˆ’πœ‡π‘π‘›(𝛼,π‘š)𝑑𝑛(𝛼,π‘š),𝜈=βˆ’2πœ‡2𝑠𝑛4ξ€Έ(𝛼,π‘š)βˆ’1𝑐𝑛2(𝛼,π‘š)𝑑𝑛2,(𝛼,π‘š)𝜎=βˆ’2𝑠𝑛2(ξ€Ίπ‘šπ›Ό,π‘š)2𝑐𝑛2(𝛼,π‘š)+𝑑𝑛2(𝛼,π‘š)𝑐𝑛2(𝛼,π‘š)𝑑𝑛2(𝛼,π‘š),πœ‡<0.(3.32) In this case, the solution of (3.27) takes the following form: πœ“π‘›=ξ€·πœ‰π‘ π‘›(𝛼,π‘š)π‘π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šβˆšξ€·πœ‰βˆ’πœ‡π‘π‘›(𝛼,π‘š)𝑑𝑛(𝛼,π‘š)𝑠𝑛𝑛,π‘šExpβˆ’π‘–βˆ’2𝑑𝑠𝑛2ξ€Ίπ‘š(𝛼,π‘š)2𝑐𝑛2(𝛼,π‘š)+𝑑𝑛2ξ€»(𝛼,π‘š)𝑐𝑛2(𝛼,π‘š)𝑑𝑛2(𝛼,π‘š)+πœŒξƒ­ξƒ°,(3.33) where πœ‰π‘›=𝛼𝑛+𝛽.

Type 2. If 𝑒0=1βˆ’π‘š2, 𝑒1=2π‘š2βˆ’1, and 𝑒2=βˆ’π‘š2. In this case the solution of (3.29) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0βˆ’π›Ό1ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šξ€·πœ‰π‘π‘›π‘›ξ€Έ,π‘š,(3.34) Consequently, by using Maple or Mathematica, we get the following results: 𝛼0=0,𝛼1=𝑠𝑛(𝛼,π‘š)𝑑𝑛(𝛼,π‘š)βˆšξ€·π‘šβˆ’πœ‡π‘π‘›(𝛼,π‘š),𝜈=2πœ‡2𝑠𝑛4(𝛼,π‘š)βˆ’2π‘š2𝑠𝑛2ξ€Έ(𝛼,π‘š)+1𝑐𝑛2,(𝛼,π‘š)𝜎=βˆ’2𝑠𝑛2(ξ€Ίπ‘šπ›Ό,π‘š)2𝑠𝑛2(𝛼,π‘š)+1βˆ’2π‘š2𝑐𝑛2(𝛼,π‘š),πœ‡<0.(3.35) In this case, the solution takes the following form: πœ“π‘›ξ€·πœ‰=βˆ’π‘ π‘›(𝛼,π‘š)𝑑𝑛(𝛼,π‘š)π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘›π‘›ξ€Έ,π‘šβˆšξ€·πœ‰βˆ’πœ‡π‘π‘›(𝛼,π‘š)𝑐𝑛𝑛,π‘šΓ—Expβˆ’π‘–βˆ’2𝑑𝑠𝑛2ξ€Ίπ‘š(𝛼,π‘š)2𝑠𝑛2(𝛼,π‘š)+1βˆ’2π‘š2𝑐𝑛2.(𝛼,π‘š)+πœŒξƒ­ξƒ°(3.36)

Type 3. if 𝑒0=π‘š2βˆ’1, 𝑒1=2βˆ’π‘š2, and 𝑒2=βˆ’1. In this case, the series expansion solution of (3.29) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0βˆ’π‘š2𝛼1ξ€·πœ‰π‘ π‘›π‘›ξ€Έξ€·πœ‰π‘π‘›π‘›ξ€Έξ€·πœ‰π‘‘π‘›π‘›ξ€Έ,(3.37) Consequently, by using Maple or Mathematica, we get the following results: 𝛼0=0,𝛼1=𝑠𝑛(𝛼,π‘š)𝑐𝑛(𝛼,π‘š)βˆšξ€·π‘šβˆ’πœ‡π‘‘π‘›(𝛼,π‘š),𝜈=2πœ‡2𝑠𝑛4(𝛼,π‘š)βˆ’2𝑠𝑛2ξ€Έ(𝛼,π‘š)+1𝑑𝑛2,(𝛼,π‘š)𝜎=βˆ’2𝑠𝑛2(ξ€Ίπ‘šπ›Ό,π‘š)2𝑠𝑛2(𝛼,π‘š)βˆ’2+π‘š2𝑑𝑛2(𝛼,π‘š),πœ‡<0.(3.38) In this case, the solution takes the following form: πœ“π‘›π‘š=βˆ’2ξ€·πœ‰π‘ π‘›(𝛼,π‘š)𝑐𝑛(𝛼,π‘š)π‘ π‘›π‘›ξ€Έξ€·πœ‰,π‘šπ‘π‘›π‘›ξ€Έ,π‘šβˆšξ€·πœ‰βˆ’πœ‡π‘‘π‘›(𝛼,π‘š)𝑑𝑛𝑛,π‘šΓ—Expβˆ’π‘–βˆ’2𝑑𝑠𝑛2ξ€Ίπ‘š(𝛼,π‘š)2𝑠𝑛2(𝛼,π‘š)βˆ’2+π‘š2𝑑𝑛2.(𝛼,π‘š)+πœŒξƒ­ξƒ°(3.39)

Type 4. if 𝑒0=1βˆ’π‘š2, 𝑒1=2βˆ’π‘š2, and 𝑒2=1. In this case, the series expansion solution of (3.29) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0βˆ’π›Ό1ξ€·πœ‰π‘›π‘ π‘›ξ€Έξ€·πœ‰π‘‘π‘ π‘›ξ€Έξ€·πœ‰π‘π‘ π‘›ξ€Έ.(3.40) After some calculation, the solution of (3.27) takes the following form: πœ“π‘›ξ€·πœ‰=βˆ’π‘ π‘›(𝛼,π‘š)𝑐𝑛(𝛼,π‘š)π‘›π‘ π‘›ξ€Έξ€·πœ‰,π‘šπ‘‘π‘ π‘›ξ€Έ,π‘šβˆšξ€·πœ‰βˆ’πœ‡π‘‘π‘›(𝛼,π‘š)𝑐𝑛𝑛,π‘šΓ—Expβˆ’π‘–βˆ’2𝑑𝑠𝑛2ξ€Ίπ‘š(𝛼,π‘š)2𝑠𝑛2(𝛼,π‘š)βˆ’2+π‘š2𝑑𝑛2,(𝛼,π‘š)+πœŒξƒ­ξƒ°(3.41) where 𝜈=2πœ‡(π‘š2𝑠𝑛4(𝛼,π‘š)βˆ’2𝑠𝑛2(𝛼,π‘š)+1)/𝑑𝑛2(𝛼,π‘š).

Type 5. if 𝑒0=1, 𝑒1=2π‘š2βˆ’1, and 𝑒2=π‘š2(π‘š2βˆ’1). In this case, the series expansion solution of (3.29) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0+𝛼1ξ€·πœ‰π‘›π‘‘π‘›ξ€Έξ€·πœ‰π‘π‘‘π‘›ξ€Έξ€·πœ‰π‘ π‘‘π‘›ξ€Έ.(3.42) After some calculation, the solution of (3.27) takes the following form: πœ“π‘›ξ€·πœ‰=βˆ’π‘ π‘›(𝛼,π‘š)𝑑𝑛(𝛼,π‘š)π‘π‘‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘›π‘‘π‘›ξ€Έ,π‘šβˆšξ€·πœ‰βˆ’πœ‡π‘π‘›(𝛼,π‘š)𝑠𝑑𝑛,π‘šΓ—Expβˆ’π‘–βˆ’2𝑑𝑠𝑛2ξ€Ίπ‘š(𝛼,π‘š)2𝑠𝑛2(𝛼,π‘š)+1βˆ’2π‘š2𝑐𝑛2,(𝛼,π‘š)+πœŒξƒ­ξƒ°(3.43) where 𝜈=2πœ‡(π‘š2𝑠𝑛4(𝛼,π‘š)βˆ’2𝑠𝑛2(𝛼,π‘š)+1)/𝑐𝑛2(𝛼,π‘š).

Type 6. if 𝑒0=π‘š2, 𝑒1=βˆ’(π‘š2+1), and 𝑒2=1. In this case, the series expansion solution of (3.29) has the form: π‘ˆξ€·πœ‰π‘›ξ€Έ=𝛼0+ξ€·1βˆ’π‘š2𝛼1ξ€·πœ‰π‘›π‘π‘›ξ€Έξ€·πœ‰π‘ π‘π‘›ξ€Έξ€·πœ‰π‘‘π‘π‘›ξ€Έ.(3.44) After some calculation, the solution of (3.27) takes the following form: πœ“π‘›=ξ€·1βˆ’π‘š2ξ€Έξ€·πœ‰π‘ π‘›(𝛼,π‘š)π‘›π‘π‘›ξ€Έξ€·πœ‰,π‘šπ‘ π‘π‘›ξ€Έ,π‘šβˆšξ€·πœ‰βˆ’πœ‡π‘π‘›(𝛼,π‘š)𝑑𝑛(𝛼,π‘š)𝑑𝑐𝑛,π‘šΓ—Expβˆ’π‘–βˆ’2𝑑𝑠𝑛2ξ€Ίπ‘š(𝛼,π‘š)2𝑐𝑛2(𝛼,π‘š)+𝑑𝑛2ξ€»(𝛼,π‘š)𝑐𝑛2(𝛼,π‘š)𝑑𝑛2,(𝛼,π‘š)+πœŒξƒ­ξƒ°(3.45) where 𝜈=βˆ’2πœ‡(π‘š2𝑠𝑛4(𝛼,π‘š)βˆ’1)/[𝑐𝑛2(𝛼,π‘š)𝑑𝑛2(𝛼,π‘š)].

Remark 3.1. (1) The formulas of the exact solutions from Types 1–6 are different, and consequently, we must discuss the exact solutions in all types from 1–6.
(2) The values of 𝛼𝑖, 𝛽𝑖, 𝑑𝑖, and 𝑐𝑖 in Examples  1 and 2 have a unique determination in all types of this method.

4. Conclusion

In this paper, we put a direct method to calculate the rational Jacobi elliptic solutions for the nonlinear difference differential equations via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. As a result, many new and more rational Jacobi elliptic solutions are obtained, from which hyperbolic function solutions and trigonometric function solutions are derived when the modulus π‘šβ†’1 and π‘šβ†’0.