Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 738082, 21 pages
Research Article

Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

1State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
2Deepwater Engineering Research Center, Dalian University of Technology, Dalian 116024, China
3School of Naval Architecture, Dalian University of Technology, Dalian 116024, China

Received 19 January 2012; Accepted 25 March 2012

Academic Editor: Di Liu

Copyright © 2012 Wen-Hua Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other) of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.