Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2012, Article ID 738082, 21 pages
http://dx.doi.org/10.1155/2012/738082
Research Article

Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

1State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
2Deepwater Engineering Research Center, Dalian University of Technology, Dalian 116024, China
3School of Naval Architecture, Dalian University of Technology, Dalian 116024, China

Received 19 January 2012; Accepted 25 March 2012

Academic Editor: Di Liu

Copyright © 2012 Wen-Hua Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Zhao and O. M. Faltinsen, “Water entry of arbitrary two-dimensional sections with and without flow separation,” in Twenty-first Symposium. On Naval Hydrodynamics, National Academy, Washington, DC, USA, 1997. View at Google Scholar
  2. H. Sun, Z. H. Lu, and Y. S. He, “Experimental research on the fluid-structure interaction in water entry of 2D elastic wedge,” Journal of Hydrodynamics, vol. 18, no. 1, pp. 104–109, 2003. View at Google Scholar
  3. T. Bunnik and B. Buchner, “Numerical prediction of wave loads on subsea structures in the splash zone,” in Proceedings of the 14th International Offshore and Polar Engineering Conference, pp. 284–290, Toulon, France, 2004.
  4. W. H. Wang and Y. Y. Wang, “An improved free surface capturing method based on Cartesian cut cell mesh for water-entry and exit problems,” Proceedings of the Royal Society A, vol. 465, no. 2106, pp. 1843–1868, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. L. Qian, D. M. Causon, D. M. Ingram et al., “A free-surface capturing method for two fluid flows with moving bodies,” Proceedings of the Royal Society A, vol. 462, no. 2065, pp. 21–42, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. F. J. Kelecy and R. H. Pletcher, “The development of a free surface capturing approach for multidimensional free surface flows in closed containers,” Journal of Computational Physics, vol. 138, no. 2, pp. 939–980, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. D. Pan and C. H. Chang, “The capturing of free surfaces in incompressible multi-fluid flows,” International Journal for Numerical Methods in Fluids, vol. 33, no. 2, pp. 203–222, 2000. View at Google Scholar
  8. G. Yang, D. M. Causon, D. M. Ingram, R. Saunders, and P. Batten, “A Cartesian cut cell method for compressible flows. Part A. Static body problems,” Aeronautical Journal, vol. 101, no. 1002, pp. 47–56, 1997. View at Google Scholar · View at Scopus
  9. G. Yang, D. M. Causon, D. M. Ingram, R. Saunders, and P. Battent, “A Cartesian cut cell method for compressible flows. Part B. Moving body problems,” Aeronautical Journal, vol. 101, no. 1002, pp. 57–65, 1997. View at Google Scholar · View at Scopus
  10. D. M. Causon, D. M. Ingram, and C. G. Mingham, “A Cartesian cut cell method for shallow water flows with moving boundaries,” Advances in Water Resources, vol. 24, no. 8, pp. 899–911, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of Computational Physics, vol. 43, no. 2, pp. 357–372, 1981. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. W. Y. Soh and J. W. Goodrich, “Unsteady solution of incompressible Navier-Stokes equations,” Journal of Computational Physics, vol. 79, no. 1, pp. 113–134, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. F. J. Kelecy and R. H. Pletcher, “The development of a free surface capturing approach for multidimensional free surface flows in closed containers,” Journal of Computational Physics, vol. 138, no. 2, pp. 939–980, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  14. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, 2nd edition, 2001.
  15. D. Pan and H. Lomax, “A new approximate LU factorization scheme for the Reynolds-averaged Navier-Stokes equations,” American Institute of Aeronautics and Astronautics, vol. 26, no. 2, pp. 163–171, 1988. View at Publisher · View at Google Scholar