Research Article  Open Access
Zhongdi Cen, Anbo Le, Aimin Xu, "Exponential Time Integration and SecondOrder Difference Scheme for a Generalized BlackScholes Equation", Journal of Applied Mathematics, vol. 2012, Article ID 796814, 12 pages, 2012. https://doi.org/10.1155/2012/796814
Exponential Time Integration and SecondOrder Difference Scheme for a Generalized BlackScholes Equation
Abstract
We apply an exponential time integration scheme combined with a central difference scheme on a piecewise uniform mesh with respect to the spatial variable to evaluate a generalized BlackScholes equation. We show that the scheme is secondorder convergent for both time and spatial variables. It is proved that the scheme is unconditionally stable. Numerical results support the theoretical results.
1. Introduction
The pricing and hedging of derivative securities, also known as contingent claims, is a subject of much practical importance. One basic type of derivative is an option. The owner of a call option has the right but not the obligation to purchase an underlying asset (such as a stock) for a specified price (called the exercise price or strike price) on or before a expiry date. A put option is similar except the owner of such a contract has the right but not the obligation to sell. Options which can be exercised only on the expiry date are called European, whereas options which can be exercised any time up to and including the expiry date are classified as American. It was shown by Black and Scholes [1] that these option prices satisfy a secondorder partial differential equation with respect to the time horizon and the underlying asset price . This equation is now known as the BlackScholes equation and can be solved exactly when the coefficients are constant or spaceindependent. However, in many practical situations, numerical solutions are normally sought. Therefore, efficient and accurate numerical algorithms are essential for solving this problem accurately.
The BlackScholes differential operator at is degenerate. A common and widely used approach by many authors dealing with finite difference/volume/element methods for the BlackScholes equation is to apply an Euler transformation to remove the degeneracy of the differential operator when the parameters of the BlackScholes equation are constant or space independent, see for example [2โ7]. As a result of the Euler transformation, the transformed interval becomes . However, the truncation on the lefthand side of the domain to artificially remove the degeneracy may cause computational errors. Furthermore, the uniform mesh on the transformed interval will lead to the originally grid points concentrating around inappropriately. Moreover, when a problem is spacedependent, this transformation is impossible, and thus the BlackScholes equation in the original form needs to be solved.
It is well known that when using the standard finite difference method to solve those problems involving the convectiondiffusion operator, such as the BlackScholes differential operator, numerical difficulty can be caused. The main reason is that when the volatility or the asset price is small, the BlackScholes differential operator becomes a convectiondominated operator. Hence, the implicit Euler scheme with central spatial difference method may lead to nonphysical oscillations in the computed solution. The implicit Euler scheme with upwind spatial difference method does not have this disadvantage, but this difference scheme is only firstorder convergent [8]. Recently, a stable fitted finite volume method [9] is employed for the discretization of the BlackScholes equation. But it is also firstorder convergent. In [10, 11] numerical methods of option pricing models are studied by applying a standard finite volume method to obtain a difference scheme. Their numerical schemes use central difference for a given mesh, but switch to upstream weighting for a small number of nodes, which are secondorder spatial convergent. In this paper we change the grid spacing to a piecewise uniform mesh which is constructed so that central difference is used everywhere.
For time discretization, explicit schemes are easy to implement but suffer from stability problems. Some wellknown secondorder implicit schemes, such as CrankNicolson method, are prone to spurious oscillations unless the time step size is no more than twice the maximum time step size for an explicit method (see Zvan et al. [10, 11]). Although the fully implicit backward Euler method may be used to accurately solve the BlackScholes PDE due to its strong stability properties, it is only firstorder accurate in time. Exponential time integration has gained importance following the work of Cox and Matthews [12] and with recent developments in efficient methods for computing the matrix exponential [13โ16], this time evolution method is likely to be a popular choice for solving large semidiscrete systems arising in various numerical computations.
In [17, 18], we have presented robust difference schemes for the BlackScholes equation, which is based on the implicit Euler method for time discretization and a central difference method for spatial discretization. In this paper, we apply an exponential time integration scheme combined with a central difference scheme on a piecewise uniform mesh with respect to the spatial variable. We show that our scheme is secondorder convergent for both time and spatial variables, while in [17, 18] the convergence for the time variable is only first order. It is proved that the scheme is unconditionally stable. Numerical results support this conclusion.
The rest of the paper is organized as follows. In the next section we discuss the continuous model of the BlackScholes equations. The discretization method is described in Section 3. It is shown that the finite difference scheme is secondorder convergent with respect to both spatial and time variables. In Section 4 we prove that the difference scheme is unconditionally stable. Finally numerical examples are presented in Section 5.
2. The Continuous Problem
We consider the following generalized BlackScholes equation Here is the European call option price at asset price and at time to maturity , is the exercise price, is the maturity, is the riskfree interest rate, and represents the volatility function of underlying asset. Here we assume that , . When and are constant functions, it becomes the classical BlackScholes model.
Even though as goes to zero the generalized BlackScholes operator (2.1) is degenerate, the existence and uniqueness of a solution of (2.1)โ(2.3) is well known. Due to the fact that the initial condition is not smooth, the finite difference scheme may not converge to the exact solution.
We first modify the model as follows. Define as where is a transition parameter and is a function which smooths out the original around . This requires that satisfies Using these ten conditions we can easily find that Replacing in the initial condition (2.2) by the fourthorder smooth function we obtain The existence and uniqueness of a solution of (2.7)โ(2.9) can be found in [19], which also gives the following result: for , where is a positive constant.
In order to apply the numerical method we need to truncate the infinite domain into , where is suitably chosen positive number. Based on Wilmott et al.โs estimate [20] that the upper bound of the asset price is typically three or four times the strike price, it is reasonable for us to set . Thus we consider the following problem: The existence and uniqueness of a solution of (2.11)โ(2.14) can be also found in [19], which also gives the following result: It follows from (2.10) and (2.15) that we can make the solution of our modified model (2.11)โ(2.14) close to that of the original model (2.1)โ(2.3) by choosing sufficiently small and sufficiently large . In the remaining of this paper we will consider the model (2.11)โ(2.14).
3. Discretization Scheme
The exponential time differencing scheme is an approach used for the numerical solution of a wide range of PDEs that involve spatial variables as well as a time variable. The spatial discretization results in an approximating system of ODEs. For an inhomogeneous linear PDE, this method leads to an inhomogeneous linear system of ODEs in time whose solution satisfies a twoterm recurrence relation involving the matrix exponential, where the matrix is determined by the form of spatial discretization applied such as finite difference, finite element, or spectral approach. In this paper we use a central difference scheme on a piecewise uniform mesh for approximating the spatial derivatives.
The use of central difference scheme on the uniform mesh may produces nonphysical oscillations in the computed solution. To overcome this oscillation we use a piecewise uniform mesh on the space interval : where Here we have used a refined mesh at the region near for treating the nonsmoothness of the payoff function. It is easy to see that the mesh sizes satisfy
We discretize the generalized BlackScholes operator using a central difference scheme on the above piecewise uniform mesh: for . This discretization leads to an initial value problem of the form where , the matrix of order is given by with The vectors and are the corresponding boundary and initial conditions:
Lemma 3.1. For each the matrix is strictly diagonally dominant.
Proof. It is easy to see that for sufficiently large . Clearly, Hence we verify that the matrix is strictly diagonally dominant.
Solving the system of (3.5) gives which satisfies the following recurrence relation: in which is a constant time step in the discretization of the time variable , at the points ().
Using a numerical integration rule for evaluating the quadrature in (3.12) gives the following secondorder formula:
Now the problem is how to approximate to get numerical solution. A good approximation to is the Padรฉ approximation which has the form [21, 22] where and are the polynomials of degrees and , respectively, with real coefficients, in each of which the constant term is unity.
The numerical method to be employed here is based on the use of the following secondorder rational approximation: So we have for the matrix exponentials in our recurrence relation (3.13).
Using (3.13) and (3.16) we get for , where
It can be seen that the truncation error of the difference scheme (3.17) with is (see [21], e.g.).
4. Stability Analysis
Lemma 4.1. For each the real part of each nonzero eigenvalue of is negative.
Proof. From Lemma 3.1 we can obtain that for each the matrix is an Mmatrix, thus the real part of each nonzero eigenvalue of is positive (see [23, Theoremโโ3.1]). Hence the real part of each nonzero eigenvalue of is negative.
Theorem 4.2. The difference scheme (3.17) is unconditionally stable.
Proof. Let () be eigenvalues of matrix for a fixed , then are eigenvalues of matrix Let is the conjugate complex of . It is easy to check where we have used Lemma 4.1. Hence we have From this we complete the proof.
5. Numerical Experiments
In this section we verify experimentally the theoretical results obtained in the preceding section. Errors and convergence rates for the numerical scheme are presented for two test problems.
Test 1
European call option with parameters: , , , and .
Test 2
European call option with parameters: , , , and .
For Tests 1 and 2 we choose of the rational approximation (3.17). The computed option value with are depicted in Figures 1 and 2, respectively.
The exact solutions of our test problems are not available. We use the approximated solution obtained by the implicit Euler method in [17] with , as the exact solution since we know this method converges. Because we only know "the exact solution" on mesh points, we use the linear interpolation to get solutions at other points. In this paper denotes โthe exact solutionโ which is a linear interpolation of the approximated solution obtained by the implicit Euler method. We measure the accuracy in the discrete maximum norm and the convergence rate for the exponential time integration method and the implicit Euler method in [17]. The error estimates and convergence rates in our computed solutions of Tests 1 and 2 from both methods are listed in Tables 1 and 2, respectively.


From the figures it is seen that the numerical solutions by our method are nonoscillatory. We compare the accuracy of the exponential time integration method with the implicit Euler method in [17]. From Tables 1 and 2 we can see the exponential time integration method converges more rapidly than the implicit Euler method in [17], but for the same and the exponential time integration method require more computer time than the implicit Euler method. We also can see that of the exponential time integration method is close to 2, even though this rate is not reached for large and , the reason is that the โexact solutionโ is not really the exact solution. Therefore the numerical results support the convergence estimate of Theorem 4.2.
Acknowledgments
The authors would like to thank the anonymous referee for several suggestions for the improvement of this paper. The work was supported by Zhejiang Province Natural Science Foundation (Grant nos. Y6100021, Y6110310) of China and Ningbo Municipal Natural Science Foundation (Grant no. 2010A610099) of China.
References
 F. Black and M. S. Scholes, โThe pricing of options and corporate liabilities,โ Journal of Political Economy, vol. 81, pp. 637โ654, 1973. View at: Google Scholar
 G. Courtadon, โA more accurate finite difference approximation for the valuation of options,โ Journal of Financial and Quantitative Analysis, vol. 17, pp. 697โ703, 1982. View at: Google Scholar
 M. Giles and R. Carter, โConvergence analysis of CrankNicolson and Rannacher timemarching,โ Journal of Computational Finance, vol. 94, pp. 89โ112, 2006. View at: Google Scholar
 D. M. Pooley, K. R. Vetzal, and P. A. Forsyth, โConvergence remedies for nonsmooth payoffs in option pricing,โ Journal of Computational Finance, vol. 6, no. 4, pp. 25โ40, 2003. View at: Google Scholar
 E. Schwartz, โThe valuation of warrants: implementing a new approach,โ The Journal of Financial Economics, vol. 13, pp. 79โ93, 1977. View at: Google Scholar
 D. Y. Tangman, A. Gopaul, and M. Bhuruth, โNumerical pricing of options using highorder compact finite difference schemes,โ Journal of Computational and Applied Mathematics, vol. 218, no. 2, pp. 270โ280, 2008. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 J. Zhao, M. Davison, and R. M. Corless, โCompact finite difference method for American option pricing,โ Journal of Computational and Applied Mathematics, vol. 206, no. 1, pp. 306โ321, 2007. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 C. Vรกzquez, โAn upwind numerical approach for an American and European option pricing model,โ Applied Mathematics and Computation, vol. 97, no. 23, pp. 273โ286, 1998. View at: Publisher Site  Google Scholar
 S. Wang, โA novel fitted finite volume method for the BlackScholes equation governing option pricing,โ IMA Journal of Numerical Analysis, vol. 24, no. 4, pp. 699โ720, 2004. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 R. Zvan, P. Forsyth, and K. Vetzal, โRobust numerical methods for PDE models of Asian options,โ The Journal of Financial Economics, vol. 1, no. 2, pp. 39โ78, 1998. View at: Google Scholar
 R. Zvan, P. A. Forsyth, and K. R. Vetzal, โA finite volume approach for contingent claims valuation,โ IMA Journal of Numerical Analysis, vol. 21, no. 3, pp. 703โ731, 2001. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 S. M. Cox and P. C. Matthews, โExponential time differencing for stiff systems,โ Journal of Computational Physics, vol. 176, no. 2, pp. 430โ455, 2002. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 N. Rambeerich, D. Y. Tangman, A. Gopaul, and M. Bhuruth, โExponential time integration for fast finite element solutions of some financial engineering problems,โ Journal of Computational and Applied Mathematics, vol. 224, no. 2, pp. 668โ678, 2009. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 D. Y. Tangman, A. Gopaul, and M. Bhuruth, โExponential time integration and Chebychev discretisation schemes for fast pricing of options,โ Applied Numerical Mathematics, vol. 58, no. 9, pp. 1309โ1319, 2008. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 Z. F. Tian and P. X. Yu, โA highorder exponential scheme for solving 1D unsteady convectiondiffusion equations,โ Journal of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2477โ2491, 2011. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 M. Yousuf, โEfficient Lstable method for parabolic problems with application to pricing American options under stochastic volatility,โ Applied Mathematics and Computation, vol. 213, no. 1, pp. 121โ136, 2009. View at: Publisher Site  Google Scholar
 Z. Cen and A. Le, โA robust and accurate finite difference method for a generalized BlackScholes equation,โ Journal of Computational and Applied Mathematics, vol. 235, no. 13, pp. 3728โ2733, 2011. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 Z. Cen, A. Le, and A. Xu, โA secondorder difference scheme for the penalized BlackScholes equation governing American put option pricing,โ Computational Economics. In press. View at: Publisher Site  Google Scholar
 C.K. Cho, T. Kim, and Y. Kwon, โEstimation of local volatilities in a generalized BlackScholes model,โ Applied Mathematics and Computation, vol. 162, no. 3, pp. 1135โ1149, 2005. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, UK, 1993.
 M. Dehghan, โNumerical techniques for a parabolic equation subject to an overspecified boundary condition,โ Applied Mathematics and Computation, vol. 132, no. 23, pp. 299โ313, 2002. View at: Publisher Site  Google Scholar  Zentralblatt MATH
 G. D. Smith, Numerical Solution of Partial Differential Equations (Finite Difference Method), The Clarendon Press Oxford University Press, New York, NY, USA, 3rd edition, 1985.
 G. Poole and T. Boullion, โA survey on Mmatrices,โ SIAM Review, vol. 16, pp. 419โ427, 1974. View at: Publisher Site  Google Scholar
Copyright
Copyright ยฉ 2012 Zhongdi Cen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.