Abstract

A continuous time random walk is a random walk subordinated to a renewal process used in physics to model anomalous diffusion. In this paper, we establish Chover-type laws of the iterated logarithm for continuous time random walks with jumps and waiting times in the domains of attraction of stable laws.

1. Introduction

Let {π‘Œπ‘–,𝐽𝑖} be a sequence of independent and identically distributed random vectors, and write 𝑆(𝑛)=π‘Œ1+π‘Œ2+β‹―+π‘Œπ‘› and 𝑇(𝑛)=𝐽1+𝐽2+β‹―+𝐽𝑛. Let 𝑁𝑑=max{𝑛β‰₯0βˆΆπ‘‡(𝑛)≀𝑑} the renewal process of 𝐽𝑖. A continuous time random walk (CTRW) is defined by 𝑁𝑋(𝑑)=𝑆𝑑=𝑁𝑑𝑖=1π‘Œπ‘–.(1.1) In this setting, π‘Œπ‘– represents a particle jump, and 𝐽𝑖>0 is the waiting time preceding that jump, so that 𝑆(𝑛) represents the particle location after 𝑛 jumps and 𝑇(𝑛) is the time of the 𝑛th jump. Then 𝑁𝑑 is the number of jumps by time 𝑑>0, and the CTRW 𝑋(𝑑) represents the particle location at time 𝑑>0, which is a random walk subordinated to a renewal process.

It should be mentioned that the subordination scheme of CTRW processes is going back to Fogedby [1] and that it was expanded by Baule and Friedrich [2] and Magdziarz et al. [3]. It should also be mentioned that the theory of subordination holds for nonhomogeneous CTRW processes, that were introduced in the following works: Metzler et al. [4, 5] and Barkai et al. [6].

The CTRW is useful in physics for modeling anomalous diffusion. Heavy-tailed particle jumps lead to superdiffusion, where a cloud of particles spreads faster than the classical Brownian motion, and heavy-tailed waiting times lead to subdiffusion. CTRW models and the associated fractional diffusion equations are important in applications to physics, hydrology, and finance; see, for example, Berkowitz et al. [7], Metzler and Klafter [8], Scalas [9], and Meerchaert and Scalas [10] for more information. In applications to hydrology, the heavy tailed particle jumps capture the velocity irregularities caused by a heterogeneous porous media, and the waiting times model particle sticking or trapping. In applications to finance, the particle jumps are price changes or log returns, separated by a random waiting time between trades.

If the jumps π‘Œπ‘– belong to the domain of attraction of a stable law with index 𝛼, (0<𝛼<2), and the waiting times 𝐽𝑖 belong to the domain of attraction of a stable law with index 𝛽, (0<𝛽<1), Becker-Kern et al. [11] and Meerschaert and Scheffler [12] showed that as π‘β†’βˆž, π‘βˆ’π›½/𝛼[]𝑋(𝑐𝑑)⟹𝐴(𝐸(𝑑))(1.2) a non-Markovian limit with scaling 𝐴(𝐸(𝑐𝑑))d=𝑐𝛽/𝛼𝐴(𝐸(𝑑)), where 𝐴(𝑑) is a stable LΓ©vy motion and 𝐸(𝑑) is the inverse or hitting time process of a stable subordinator. Densities of the CTRW scaling limit 𝐴(𝐸(𝑑)) solve a space-time fractional diffusion equation that also involves a fractional time derivative of order 𝛽; see Meerschaert and Scheffler [13], Becker-Kern et al. [11], and Meerschaert and Scheffler [12] for complete details. Becker-Kern et al. [14], Meerschaert and Scheffler [15], and Meerschaert et al. [16] discussed the related limit theorems for CTRWs based on two time scales, triangular arrays and dependent jumps, respectively. The aim of the present paper is to investigate the laws of the iterated logarithm for CTRWs. We establish Chover-type laws of the iterated logarithm for CTRWs with jumps and waiting times in the domains of attraction of stable laws.

Throughout this paper we will use 𝐢 to denote an unspecified positive and finite constant which may be different in each occurrence and use β€œi.o.” to stand for β€œinfinitely often” and β€œa.s." to stand for β€œalmost surely” and β€œπ‘’(π‘₯)βˆΌπ‘£(π‘₯)” to stand for β€œlim𝑒(π‘₯)/𝑣(π‘₯)=1”. Our main results read as follows.

Theorem 1.1. Let {π‘Œπ‘–} be a sequence of i.i.d. nonnegative random variables with a common distribution 𝐹, and let {𝐽𝑖}, independent of {π‘Œπ‘–}, be a sequence of i.i.d. nonnegative random variables with a common distribution 𝐺. Assume that 1βˆ’πΉ(π‘₯)∼π‘₯βˆ’π›ΌπΏ(π‘₯), 0<𝛼<2, where 𝐿 is a slowly varying function, and that 𝐺 is absolutely continuous and 1βˆ’πΊ(π‘₯)∼𝐢π‘₯βˆ’π›½, 0<𝛽<1. Let {𝐡(𝑛)} be a sequence such that 𝑛𝐿(𝐡(𝑛))/𝐡(𝑛)𝛼→𝐢 as π‘›β†’βˆž. Then one has limsupπ‘‘β†’βˆžξ‚€ξ€·π΅ξ€·π‘‘π›½ξ€Έξ€Έβˆ’1𝑋(𝑑)1/(loglog𝑑)=𝑒1/𝛼a.s.(1.3)

The following is an immediate consequence of Theorem 1.1.

Corollary 1.2. If the tail distribution of π‘Œπ‘– satisfies 𝑃(π‘Œ1>π‘₯)∼𝐢π‘₯βˆ’π›Ό in Theorem 1.1, then one has limsupπ‘‘β†’βˆžξ€·π‘‘βˆ’π›½/𝛼𝑋(𝑑)1/(loglog𝑑)=𝑒1/𝛼a.s.(1.4)

In the course of our arguments we often make statements that are valid only for sufficiently large values of some index. When there is no danger of confusion, we omit explicit mention of this proviso.

2. Chung Type LIL for Stable Summands

In this section we consider a Chung-type law of the iterated logarithm for sums of random variables in the domain of attraction of a stable law, which will take a key role to show Theorem 1.1. When 𝐽𝑖 has a symmetric stable distribution function 𝐺 characterized by 𝐸exp𝑖𝑑𝐽𝑖=expβˆ’|𝑑|𝛽forπ‘‘βˆˆβ„,(2.1)0<𝛽<2. Chover [17] established that limsupπ‘›β†’βˆž||π‘›βˆ’1/𝛽||𝑇(𝑛)1/(loglog𝑛)=𝑒1/𝛽a.s.(2.2) We call (2.2) as Chover's law of the iterated logarithm. Since then, several papers have been devoted to develop Chover's LIL; see, for example, Hedye [18–20], Pakshirajan and Vasudeva [21], Vasudeva [22], Qi and Cheng [23], Scheffler [24], Chen [25], and Peng and Qi [26] for reference. For some reason the obvious corresponding statement for the β€œlim  inf” result does not seem to have been recorded, and it is the purpose of this section to do so and may be of independent interest.

Theorem 2.1. Let {𝐽𝑖} be a sequence of i.i.d. nonnegative random variables with a common distribution 𝐺(π‘₯), and let 𝑉(π‘₯)=inf{𝑦>0∢1βˆ’πΊ(𝑦)≀1/π‘₯}. Assume that 𝐺 is absolutely continuous and 1βˆ’πΊ(π‘₯)∼π‘₯βˆ’π›½π‘™(π‘₯), 0<𝛽<1, where 𝑙 is a slowly varying function. Then one has liminfπ‘›β†’βˆžξ€·π‘‰(𝑛)βˆ’1𝑇(𝑛)1/(loglog𝑛)=1a.s.(2.3)

In order to prove Theorem 2.1, we need some lemmas.

Lemma 2.2. Let β„Ž(π‘₯) be a slowly varying function. Then, if π‘¦π‘›β†’βˆž, π‘§π‘›β†’βˆž, one has for any given 𝜏>0, limπ‘§π‘›βˆ’πœβ„Žξ€·π‘¦π‘›π‘§π‘›ξ€Έβ„Žξ€·π‘¦π‘›ξ€Έ=0,limπ‘§πœπ‘›β„Žξ€·π‘¦π‘›π‘§π‘›ξ€Έβ„Žξ€·π‘¦π‘›ξ€Έ=∞.(2.4)

Proof. See Seneta [27].

Lemma 2.3. Let {𝐽𝑖} be a sequence of i.i.d. nonnegative random variables with a common distribution 𝐺 and let 𝑀(𝑛)=max{𝐽1,𝐽2,…,𝐽𝑛}. Assume that 𝐺 is absolutely continuous and 1βˆ’πΊ(π‘₯)∼π‘₯βˆ’π›½π‘™(π‘₯), 0<𝛽<1, where 𝑙 is a slowly varying function. Then one has for some given small 𝑑>0limπ‘›β†’βˆžπΈπ‘’π‘‘π‘‡(𝑛)/𝑀(𝑛)=π‘’π‘‘βˆ«1βˆ’π‘‘10𝑒𝑑π‘₯ξ€·π‘₯βˆ’π›½ξ€Έ.βˆ’1𝑑π‘₯(2.5)

Proof. We will follow the argument of Lemma 2.1 in Darling [28]. Without loss of generality we can assume 𝐽1=max{𝐽1,𝐽2,…,𝐽𝑛}=𝑀(𝑛) since each 𝐽𝑖 has a probability of 1/𝑛 of being the largest term, and 𝑃(𝐽𝑖=𝐽𝑗)=0 for 𝑖≠𝑗 since 𝐺(π‘₯) is presumed continuous.
For notational simplicity we will use the tail distribution 𝐺(π‘₯)=1βˆ’πΊ(π‘₯)=𝑃(𝐽1>π‘₯) and denote by 𝑔(π‘₯) the corresponding density, so that ∫𝐺(π‘₯)=∞π‘₯𝑔(𝑧)𝑑𝑧. Then, the joint density of 𝐽1,𝐽2,…,𝐽𝑛, given 𝐽1=𝑀(𝑛), is 𝑔π‘₯1,π‘₯2,…,π‘₯𝑛=ξƒ―ξ€·π‘₯𝑛𝑔1𝑔π‘₯2ξ€Έξ€·π‘₯⋯𝑔𝑛ifπ‘₯1=max𝑖π‘₯𝑖,0otherwise.(2.6) Thus 𝐸𝑒𝑑𝑇(𝑛)/𝑀(𝑛)=β‹―ξ€œπ‘’ξ€œξ€œπ‘‘(π‘₯1+π‘₯2+β‹―+π‘₯𝑛)/π‘₯1𝑔π‘₯1,π‘₯2,…,π‘₯𝑛𝑑π‘₯1𝑑π‘₯2⋯𝑑π‘₯𝑛=π‘›π‘’π‘‘ξ€œβˆž0ξ€œπ‘¦0β‹―ξ€œπ‘¦0𝑒𝑑(π‘₯2+π‘₯3+β‹―+π‘₯𝑛)/𝑦𝑔π‘₯2𝑔π‘₯3ξ€Έξ€·π‘₯⋯𝑔𝑛𝑔(𝑦)𝑑π‘₯2𝑑π‘₯3⋯𝑑π‘₯𝑛𝑑𝑦=π‘›π‘’π‘‘ξ€œβˆž0ξ‚»ξ€œπ‘¦0𝑒𝑑π‘₯/𝑦𝑔(π‘₯)𝑑π‘₯π‘›βˆ’1𝑔(𝑦)𝑑𝑦.(2.7) Let us put ξ€œπœ™(𝑦,𝑑)=𝑦10𝑒𝑑π‘₯𝑔(π‘₯𝑦)𝑑π‘₯(2.8) so that 𝐸𝑒𝑑𝑇(𝑛)/𝑀(𝑛)=π‘›π‘’π‘‘ξ€œβˆž0(πœ™(𝑦,𝑑))π‘›βˆ’1𝑔(𝑦)𝑑𝑦.(2.9) It follows from Doeblin's theorem that if πœ†>0, 𝐺(πœ†π‘¦)=πœ†βˆ’π›½πΊ(𝑦)(1+π‘œ(1))(2.10) for 𝑦β‰₯𝑦0 with some large 𝑦0>0. Then, for 𝑦≀𝑦0, we can choose 𝑑>0 small enough such that 𝑑<βˆ’log𝐺(𝑦0) since 𝐺 has regularly varying tail distribution, so that πœ™(𝑦,𝑑)≀𝑒𝑑𝐺𝑦0ξ€Έ<1.(2.11) It follows that π‘›π‘’π‘‘ξ€œπ‘¦00(πœ™(𝑦,𝑑))π‘›βˆ’1𝑔(𝑦)π‘‘π‘¦βŸΆ0.(2.12) Consider the case 𝑦β‰₯𝑦0. By a slight transformation we find that πœ™(𝑦,𝑑)=1βˆ’ξ€œπΊ(𝑦)+𝑑10𝑒𝑑π‘₯𝐺(π‘₯𝑦)βˆ’ξ‚πΊ(𝑦)𝑑π‘₯=1βˆ’πΊ(𝑦)+π‘‘πΊξ€œ(𝑦)(1+π‘œ(1))10𝑒𝑑π‘₯ξ€·π‘₯βˆ’π›½ξ€Έβˆ’1𝑑π‘₯.(2.13) Putting ξ€œπœ‚=πœ‚(𝑑)=𝑑10𝑒𝑑π‘₯ξ€·π‘₯βˆ’π›½ξ€Έβˆ’1𝑑π‘₯,(2.14) we have πœ‚<1 since 0<𝛽<1 and 𝑑 is small. Thus πœ™(𝑦,𝑑)=1βˆ’ξ‚€πΊ(𝑦)(1βˆ’πœ‚)+π‘œξ‚πΊ(𝑦).(2.15) By (2.9) and making the change of variable 𝑛𝐺(𝑦)=𝑣 to give 𝐸𝑒𝑑𝑇(𝑛)/𝑀(𝑛)=π‘’π‘‘ξ€œπ‘›0𝑣1βˆ’π‘›ξ‚€1(1βˆ’πœ‚)+π‘£π‘œπ‘›ξ‚ξ‚π‘›βˆ’1π‘‘π‘£βŸΆπ‘’π‘‘ξ€œβˆž0π‘’βˆ’π‘£(1βˆ’πœ‚)=𝑒𝑑𝑣𝑑,1βˆ’πœ‚(2.16) which yields the desired result.

The following large deviation result for stable summands is due to Heyde [19].

Lemma 2.4. Let {πœ‰π‘–} be a sequence of i.i.d. nonnegative random variables with a common tail distribution satisfying 𝑃(πœ‰1>π‘₯)∼π‘₯βˆ’π‘Ÿβ„Ž(π‘₯), 0<π‘Ÿ<2, where β„Ž is a slowly varying function. Let {πœ†π‘›} be a sequence such that π‘›β„Ž(πœ†π‘›)/πœ†π‘Ÿπ‘›β†’πΆ as π‘›β†’βˆž, and let {π‘₯𝑛} be a sequence with π‘₯π‘›β†’βˆž as π‘›β†’βˆž. Then 0<liminfπ‘›β†’βˆžπ‘₯π‘Ÿπ‘›β„Žξ€·πœ†π‘›ξ€Έβ„Žξ€·π‘₯π‘›πœ†π‘›ξ€Έπ‘ƒξƒ©π‘›ξ“π‘–=1πœ‰π‘–>π‘₯π‘›πœ†π‘›ξƒͺ≀limsupπ‘›β†’βˆžπ‘₯π‘Ÿπ‘›β„Žξ€·πœ†π‘›ξ€Έβ„Žξ€·π‘₯π‘›πœ†π‘›ξ€Έπ‘ƒξƒ©π‘›ξ“π‘–=1πœ‰π‘–>π‘₯π‘›πœ†π‘›ξƒͺ<∞.(2.17)

Now we can show Theorem 2.1.

Proof of Theorem 2.1. In order to show (2.3), it is enough to show that for all πœ€>0liminfπ‘›β†’βˆž(log𝑛)πœ€π‘‰(𝑛)βˆ’1𝑇(𝑛)β‰₯1a.s.,(2.18)liminfπ‘›β†’βˆž(log𝑛)βˆ’πœ€π‘‰(𝑛)βˆ’1𝑇(𝑛)≀1a.s.(2.19)
We first show (2.18). Let π‘›π‘˜=[πœƒπ‘˜], 1<πœƒ<2. Put again 𝐺(π‘₯)=1βˆ’πΊ(π‘₯)=𝑃(𝐽1>π‘₯). Let πΊβˆ— be the inverse of 𝐺. Obverse that πΊβˆ—(𝑦)βˆΌπ‘¦βˆ’1/𝛽𝐻(1/𝑦), 0<𝑦≀1, where 𝐻 is a slowly varying function and 𝑉(𝑛)=πΊβˆ—(1/𝑛)βˆΌπ‘›1/𝛽𝐻(𝑛), so that π‘‰ξ€·π‘›π‘˜ξ€Έπ‘‰ξ€·π‘›π‘˜+1ξ€ΈβŸΆπœƒβˆ’1/𝛽(2.20)logπ‘›π‘˜ξ€Έβˆ’πœ€π‘‰ξ€·π‘›π‘˜ξ€ΈπΊβˆ—ξ‚€ξ€·logπ‘›π‘˜ξ€Έπ›½πœ€/2π‘›π‘˜βˆ’1ξ‚βˆΌξ€·logπ‘›π‘˜ξ€Έβˆ’πœ€π‘›π‘˜1/π›½π»ξ€·π‘›π‘˜ξ€Έπ‘›π‘˜1/𝛽(log𝑛)βˆ’πœ€/2π»ξ‚€π‘›π‘˜ξ€·logπ‘›π‘˜ξ€Έβˆ’π›½πœ€/2=ξ€·logπ‘›π‘˜ξ€Έβˆ’πœ€/2π»ξ€·π‘›π‘˜ξ€Έπ»ξ‚€π‘›π‘˜ξ€·logπ‘›π‘˜ξ€Έβˆ’π›½πœ€/2ξ‚βŸΆ0,(2.21) by Lemma 2.2. Let π‘ˆ,π‘ˆ1,π‘ˆ2,…,π‘ˆπ‘› be i.i.d. random variables with the distribution of π‘ˆ Uniform over (0,1), and let π‘€βˆ—(𝑛)=max{π‘ˆ1,π‘ˆ2,…,π‘ˆπ‘›}. Then, from the fact that 𝐺(𝐽𝑛) is a Uniform (0,1) random variable, we note that π‘€βˆ—(𝑛)d=𝐺(𝑀(𝑛)), 𝑛β‰₯1. From (2.21), 𝐽𝑖 nonnegative, and 𝐺 and πΊβˆ— nonincreasing, it follows that π‘ƒξ€·π‘‡ξ€·π‘›π‘˜ξ€Έβ‰€ξ€·logπ‘›π‘˜ξ€Έβˆ’πœ€π‘‰ξ€·π‘›π‘˜ξ€·π‘€ξ€·π‘›ξ€Έξ€Έβ‰€π‘ƒπ‘˜ξ€Έβ‰€ξ€·logπ‘›π‘˜ξ€Έβˆ’πœ€π‘‰ξ€·π‘›π‘˜ξ€Έξ€Έβ‰€π‘ƒ(πΊβˆ—ξ‚€πΊξ€·π‘€ξ€·π‘›π‘˜β‰€ξ€Έξ€ΈπΊβˆ—ξ‚€ξ€·logπ‘›π‘˜ξ€Έπ›½πœ€/2π‘›π‘˜βˆ’1=𝑃(πΊξ‚€π‘€ξ€·π‘›π‘˜ξ€Έβ‰₯ξ€·logπ‘›π‘˜ξ€Έπ›½πœ€/2π‘›π‘˜βˆ’1=𝑃1βˆ’π‘€βˆ—ξ€·π‘›π‘˜ξ€Έβ‰₯ξ€·logπ‘›π‘˜ξ€Έπ›½πœ€/2π‘›π‘˜βˆ’1𝑀=π‘ƒβˆ—ξ€·π‘›π‘˜ξ€Έξ€·β‰€1βˆ’logπ‘›π‘˜ξ€Έπ›½πœ€/2π‘›π‘˜βˆ’1=ξ‚€π‘ƒξ‚€ξ€·π‘ˆβ‰€1βˆ’logπ‘›π‘˜ξ€Έπ›½πœ€/2π‘›π‘˜βˆ’1ξ‚ξ‚π‘›π‘˜ξ‚€βˆ’ξ€·β‰€explogπ‘›π‘˜ξ€Έπ›½πœ€/2.(2.22) Hence, the sum of the left hand side of the previously mentioned probability is finite; by the Borel-Cantelli lemma, we get liminfπ‘˜β†’βˆžξ€·logπ‘›π‘˜ξ€Έπœ€π‘‰ξ€·π‘›π‘˜ξ€Έβˆ’1π‘‡ξ€·π‘›π‘˜ξ€Έβ‰₯1a.s.(2.23) Thus, by (2.20) we have liminfπ‘›β†’βˆž(log𝑛)πœ€π‘‰(𝑛)βˆ’1𝑇(𝑛)β‰₯liminfπ‘˜β†’βˆžminπ‘›π‘˜β‰€π‘›β‰€π‘›π‘˜+1(log𝑛)πœ€π‘‰(𝑛)βˆ’1𝑇(𝑛)β‰₯liminfπ‘˜β†’βˆžξƒ©π‘‰ξ€·π‘›π‘˜ξ€Έπ‘‰ξ€·π‘›π‘˜+1ξ€Έξƒͺξ€·logπ‘›π‘˜ξ€Έπœ€π‘‰ξ€·π‘›π‘˜ξ€Έβˆ’1π‘‡ξ€·π‘›π‘˜ξ€Έβ‰₯πœƒβˆ’1/𝛽a.s.(2.24) Therefore, by the arbitrariness of πœƒ>1, (2.18) holds.
We now show (2.19). Let π‘›π‘˜=[π‘’π‘˜1+𝛿], 𝛿>0. For notational simplicity, we introduce the following notations: πœπ‘˜=π‘‡ξ€·π‘›π‘˜βˆ’π‘›π‘˜βˆ’1ξ€Έπ‘€ξ€·π‘›π‘˜βˆ’π‘›π‘˜βˆ’1ξ€Έ,πΈπ‘˜=ξ€½π‘‡ξ€·π‘›π‘˜ξ€Έξ€·π‘›βˆ’π‘‡π‘˜βˆ’1≀logπ‘›π‘˜ξ€Έπœ€π‘‰ξ€·π‘›π‘˜,ξ‚πΈξ€Έξ€Ύπ‘˜=ξ€½π‘‡ξ€·π‘›π‘˜βˆ’1ξ€Έξ€·β‰₯πœ€logπ‘›π‘˜ξ€Έπœ€π‘‰ξ€·π‘›π‘˜,πΉξ€Έξ€Ύπ‘˜=ξ‚†π‘€ξ€·π‘›π‘˜βˆ’π‘›π‘˜βˆ’1≀loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)/π›½π‘‰ξ€·π‘›π‘˜ξ€Έξ‚‡,π‘‚π‘˜=ξ‚†πœπ‘˜β‰₯ξ€·logπ‘›π‘˜ξ€Έπœ€ξ€·loglogπ‘›π‘˜ξ€Έβˆ’(1βˆ’πœ€)/𝛽.(2.25) By Lemma 2.3, we have π‘ƒξ€·π‘‚π‘˜ξ€Έξ‚€ξ€·β‰€expβˆ’π‘‘logπ‘›π‘˜ξ€Έπœ€ξ€·loglogπ‘›π‘˜ξ€Έβˆ’1βˆ’πœ€/π›½ξ‚πΈπ‘’π‘‘πœπ‘˜ξ‚€ξ€·β‰€πΆexpβˆ’π‘‘logπ‘›π‘˜ξ€Έπœ€ξ€·loglogπ‘›π‘˜ξ€Έβˆ’(1βˆ’πœ€)/𝛽.(2.26) Thus, we get βˆ‘π‘ƒ(π‘‚π‘˜)<∞.
Observe again that πΊβˆ—(𝑦)βˆΌπ‘¦βˆ’1/𝛽𝐻(1/𝑦) and 𝑉(𝑛)βˆΌπ‘›1/𝛽𝐻(𝑛), so that π‘‰ξ€·π‘›π‘˜ξ€Έπ‘‰ξ€·π‘›π‘˜βˆ’1ξ€Έβ‰₯𝑒(1/𝛽)π‘˜π›Ώξ€·,(2.27)loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)/π›½π‘‰ξ€·π‘›π‘˜ξ€ΈπΊβˆ—ξ‚€ξ€·loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)π‘›π‘˜βˆ’1ξ‚βˆΌξ€·loglogπ‘›π‘˜ξ€Έ2(1βˆ’πœ€)/π›½π»ξ€·π‘›π‘˜ξ€Έπ»ξ‚€ξ€·loglogπ‘›π‘˜ξ€Έβˆ’(1βˆ’πœ€)π‘›π‘˜ξ‚βŸΆβˆž,(2.28) by Lemma 2.2. Thus, we note π‘ƒξ€·πΉπ‘˜ξ€Έβ‰₯𝑃(πΊβˆ—ξ‚€πΊξ€·π‘€ξ€·π‘›π‘˜βˆ’π‘›π‘˜βˆ’1β‰€ξ€Έξ€ΈπΊβˆ—ξ‚€ξ€·loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)π‘›π‘˜βˆ’1=𝑃(πΊξ‚€π‘€ξ€·π‘›π‘˜βˆ’π‘›π‘˜βˆ’1ξ€Έβ‰₯ξ€·loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)π‘›π‘˜βˆ’1=𝑃1βˆ’π‘€βˆ—ξ€·π‘›π‘˜βˆ’π‘›π‘˜βˆ’1ξ€Έβ‰₯ξ€·loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)π‘›π‘˜βˆ’1𝑀=π‘ƒβˆ—ξ€·π‘›π‘˜βˆ’π‘›π‘˜βˆ’1≀1βˆ’loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)π‘›π‘˜βˆ’1=ξ‚€π‘ƒξ‚€ξ€·π‘ˆβ‰€1βˆ’loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)π‘›π‘˜βˆ’1ξ‚ξ‚π‘›π‘˜βˆ’π‘›π‘˜βˆ’1=ξ‚€ξ€·1βˆ’loglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€)π‘›π‘˜βˆ’1ξ‚π‘›π‘˜βˆ’π‘›π‘˜βˆ’1ξ‚€ξ€·β‰₯expβˆ’πΆloglogπ‘›π‘˜ξ€Έ(1βˆ’πœ€/2),(2.29) which yields easily βˆ‘π‘ƒ(πΉπ‘˜)=∞. Hence, since 𝑃(πΈπ‘˜)β‰₯𝑃(πΉπ‘˜)βˆ’π‘ƒ(π‘‚π‘˜), we get βˆ‘π‘ƒ(πΈπ‘˜)=∞. Since πΈπ‘˜ are independent, by the Borel-Cantelli lemma, we get liminfπ‘˜β†’βˆžξ€·logπ‘›π‘˜ξ€Έβˆ’πœ€π‘‰ξ€·π‘›π‘˜ξ€Έβˆ’1ξ€·π‘‡ξ€·π‘›π‘˜ξ€Έξ€·π‘›βˆ’π‘‡π‘˜βˆ’1≀1a.s.(2.30)
By applying Lemma 2.4 and (2.27) and some simple calculation, we have easily that βˆ‘ξ‚πΈπ‘ƒ(π‘˜)<∞, so that limsupπ‘˜β†’βˆžξ€·logπ‘›π‘˜ξ€Έβˆ’πœ€π‘‰ξ€·π‘›π‘˜ξ€Έβˆ’1π‘‡ξ€·π‘›π‘˜βˆ’1ξ€Έ=0a.s.,(2.31) which, together with (2.30), implies liminfπ‘˜β†’βˆžξ€·logπ‘›π‘˜ξ€Έβˆ’πœ€π‘‰ξ€·π‘›π‘˜ξ€Έβˆ’1π‘‡ξ€·π‘›π‘˜ξ€Έβ‰€1a.s.(2.32) This yields (2.19). The proof of Theorem 2.1 is now completed.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We have to show that for all πœ€>0limsupπ‘‘β†’βˆž(log𝑑)βˆ’(1+πœ€)/π›Όξ€·π΅ξ€·π‘‘π›½ξ€Έξ€Έβˆ’1𝑋(𝑑)≀1a.s.,(3.1)limsupπ‘‘β†’βˆž(log𝑑)βˆ’(1βˆ’πœ€)/π›Όξ€·π΅ξ€·π‘‘π›½ξ€Έξ€Έβˆ’1𝑋(𝑑)β‰₯1a.s.(3.2)
We first show (3.1). Let π‘‘π‘˜=πœƒπ‘˜, 1<πœƒ<2. For notational simplicity, we introduce the following notations: π‘„π‘˜=ξ‚»ξ€·logπ‘‘π‘˜ξ€Έβˆ’(1+πœ€)/π›Όξ‚€π΅ξ‚€π‘‘π›½π‘˜ξ‚ξ‚βˆ’1π‘†ξ€·π‘π‘‘π‘˜ξ€Έξ‚Ό,β‰₯1π‘ˆ(π‘₯)=(logπ‘₯)βˆ’πœŒπ‘₯1/𝛽,𝛾1πœ€(π‘₯)=sup{π‘¦βˆΆπ‘ˆ(𝑦)≀π‘₯},𝜌=,𝑄5π›½π‘˜=ξ‚»ξ€·logπ‘‘π‘˜ξ€Έβˆ’(1+πœ€)/π›Όξ‚€π΅ξ‚€π‘‘π›½π‘˜ξ‚ξ‚βˆ’1𝑆𝛾1ξ€·π‘‘π‘˜ξ‚Ό,𝑅β‰₯1π‘˜=ξ€½π‘π‘‘π‘˜β‰₯𝛾1ξ€·π‘‘π‘˜.ξ€Έξ€Ύ(3.3)
By (2.18), we have π‘ƒξ€·π‘…π‘˜ξ€Έπ‘‡ξ€·π›Ύi.o.=𝑃1ξ€·π‘‘π‘˜ξ€Έξ€Έβ‰€π‘‘π‘˜ξ€Ύξ€Έπ‘‡ξ€·π‘‘i.o.=π‘ƒξ€·ξ€½π‘˜ξ€Έβ‰€ξ€·logπ‘‘π‘˜ξ€Έβˆ’πœŒπ‘‰ξ€·π‘‘π‘˜ξ€Έξ€Έξ€Ύi.o.=0.(3.4)
Put 𝐹(π‘₯)=1βˆ’πΉ(π‘₯)=𝑃(π‘Œ1>π‘₯). Let πΉβˆ— be the inverse of 𝐹. Recall that πΉβˆ—(𝑦)βˆΌπ‘¦βˆ’1/𝛼𝐻(1/𝑦), 0<𝑦≀1, where 𝐻 is a slowly varying function, so that 𝐡(𝑛)=πΉβˆ—(𝐢/𝑛)βˆΌπΆπ‘›1/𝛼𝐻(𝑛) and π΅ξ‚€π‘‘π›½π‘˜ξ‚π΅ξ‚€π‘‘π›½π‘˜βˆ’1ξ‚βŸΆπœƒπ›½/𝛼.(3.5)
Note that π‘ˆξ‚€ξ€·logπ‘‘π‘˜ξ€Έπœ€/4π‘‘π›½π‘˜ξ‚βˆΌξ€·logπ‘‘π‘˜ξ€Έπœ€/(4𝛽)π‘‘π‘˜ξ‚€ξ‚€ξ€·loglogπ‘‘π‘˜ξ€Έπœ€/4π‘‘π›½π‘˜ξ‚ξ‚βˆ’πœŒξ€·π›Ύβ‰₯π‘ˆ1ξ€·π‘‘π‘˜ξ€Έξ€Έ=π‘‘π‘˜.(3.6) Thus, by noting π‘ˆ increasing, ξ€·logπ‘‘π‘˜ξ€Έπœ€/(4𝛼)π‘‘π‘˜π›½/𝛼β‰₯𝛾1ξ€·π‘‘π‘˜ξ€Έ1/𝛼.(3.7) Hence, by Lemma 2.2, ξ€·logπ‘‘π‘˜ξ€Έπœ€/(2𝛼)π΅ξ‚€π‘‘π›½π‘˜ξ‚π΅ξ€·π›Ύ1ξ€·π‘‘π‘˜ξ€·ξ€Έξ€Έβ‰₯𝐢logπ‘‘π‘˜ξ€Έπœ€/(2𝛼)π‘‘π‘˜π›½/π›Όξ‚€ξ‚π»ξ‚€π‘‘π›½π‘˜ξ‚ξ‚1/𝛼𝛾1ξ€·π‘‘π‘˜ξ€Έξ€Έ1/𝛼𝐻𝛾1ξ€·π‘‘π‘˜ξ‚ξ€Έξ€Έ1/𝛼β‰₯1.(3.8) Thus, by (3.8) and Lemma 2.4, we have π‘ƒξ‚€ξ‚π‘„π‘˜ξ‚βŽ›βŽœβŽœβŽπ‘†ξ€·π›Ύβ‰€π‘ƒ1ξ€·π‘‘π‘˜β‰₯βŽ›βŽœβŽœβŽξ€·ξ€Έξ€Έlogπ‘‘π‘˜ξ€Έ(1+πœ€)/π›Όπ΅ξ‚€π‘‘π›½π‘˜ξ‚π΅ξ€·π›Ύ1ξ€·π‘‘π‘˜βŽžβŽŸβŽŸβŽ π΅ξ€·π›Ύξ€Έξ€Έ1ξ€·π‘‘π‘˜βŽžβŽŸβŽŸβŽ ξ‚€π‘†ξ€·π›Ύξ€Έξ€Έβ‰€π‘ƒ1ξ€·π‘‘π‘˜β‰₯ξ€·ξ€Έξ€Έlogπ‘‘π‘˜ξ€Έ(1+πœ€/2)/𝛼𝐡𝛾1ξ€·π‘‘π‘˜ξ‚ξ€·ξ€Έξ€Έβ‰€πΆlogπ‘‘π‘˜ξ€Έβˆ’(1+πœ€/4).(3.9) Therefore, βˆ‘ξ‚π‘„π‘ƒ(π‘˜)<∞. By the Borel-Cantelli lemma, we get 𝑄𝑃(π‘˜i.o.)=0.
Observe that π‘ƒξƒ©βˆžξšπ‘˜=π‘›π‘„π‘˜ξƒͺ=π‘ƒβˆžξšπ‘˜=π‘›π‘„π‘˜βˆ©βˆžξ™π‘˜=π‘›π‘…π‘π‘˜ξƒͺ+π‘ƒβˆžξšπ‘˜=π‘›π‘„π‘˜βˆ©ξƒ©βˆžξ™π‘˜=π‘›π‘…π‘π‘˜ξƒͺ𝑐ξƒͺξƒ©β‰€π‘ƒβˆžξšπ‘˜=π‘›ξ‚π‘„π‘˜ξƒͺ+π‘ƒβˆžξšπ‘˜=π‘›π‘…π‘˜ξƒͺ,(3.10) where 𝐸𝑐 stands for the complement of 𝐸. Thus, letting π‘›β†’βˆž, we have π‘ƒξ€·π‘„π‘˜ξ€Έξ‚€ξ‚π‘„i.o.β‰€π‘ƒπ‘˜ξ‚ξ€·π‘…i.o.+π‘ƒπ‘˜ξ€Έi.o.=0,(3.11) which implies that limsupπ‘˜β†’βˆžξ€·logπ‘‘π‘˜ξ€Έβˆ’(1+πœ€)/π›Όξ‚€π΅ξ‚€π‘‘π›½π‘˜ξ‚ξ‚βˆ’1π‘‹ξ€·π‘‘π‘˜ξ€Έβ‰€1a.s.(3.12) Thus, by (3.5), we have limsupπ‘‘β†’βˆž(log𝑑)βˆ’(1+πœ€)/π›Όξ€·π΅ξ€·π‘‘π›½ξ€Έξ€Έβˆ’1𝑋(𝑑)≀limsupπ‘˜β†’βˆžmaxπ‘‘π‘˜βˆ’1<π‘‘β‰€π‘‘π‘˜(log𝑑)βˆ’(1+πœ€)/π›Όξ€·π΅ξ€·π‘‘π›½ξ€Έξ€Έβˆ’1𝑋(𝑑)β‰€πœƒπ›½/𝛼limsupπ‘˜β†’βˆžξ€·logπ‘‘π‘˜ξ€Έβˆ’(1+πœ€)/π›Όξ‚€π΅ξ‚€π‘‘π›½π‘˜ξ‚ξ‚βˆ’1π‘‹ξ€·π‘‘π‘˜ξ€Έβ‰€πœƒπ›½/𝛼a.s.(3.13) This yields (3.1) immediately by letting πœƒβ†“1.
We now show (3.2). Let π‘‘π‘˜=π‘’π‘˜1+𝛿, 𝛿>0. To show (3.2), it is enough to prove limsupπ‘˜β†’βˆžξ€·logπ‘‘π‘˜ξ€Έβˆ’(1βˆ’πœ€)/π›Όξ‚€π΅ξ‚€π‘‘π›½π‘˜ξ‚ξ‚βˆ’1π‘‹ξ€·π‘‘π‘˜ξ€Έβ‰₯1a.s.(3.14)
Put Ξ›π‘˜=ξ‚»ξ€·logπ‘‘π‘˜ξ€Έβˆ’(1βˆ’πœ€)/π›Όξ‚€π΅ξ‚€π‘‘π›½π‘˜ξ‚ξ‚βˆ’1ξ€·π‘†ξ€·π‘π‘‘π‘˜ξ‚Ό,π‘ˆξ€Έξ€Έβ‰₯11(π‘₯)=(logπ‘₯)𝜌π‘₯1/𝛽,𝛾2ξ€½(π‘₯)=supπ‘¦βˆΆπ‘ˆ1ξ€Ύπœ€(𝑦)≀π‘₯,𝜌=,π‘Š5π›½π‘˜=ξ‚»ξ€·logπ‘‘π‘˜ξ€Έβˆ’(1βˆ’πœ€)/π›Όξ‚€π΅ξ‚€π‘‘π›½π‘˜ξ‚ξ‚βˆ’1𝑆𝛾2ξ€·π‘‘π‘˜ξ€·π›Ύξ€Έξ€Έβˆ’π‘†2ξ€·π‘‘π‘˜βˆ’1ξ‚Ό,𝑅β‰₯1π‘˜=ξ€½π‘π‘‘π‘˜β‰₯𝛾2ξ€·π‘‘π‘˜.ξ€Έξ€Ύ(3.15)
By (2.19), we have π‘ƒξ‚€ξ‚π‘…π‘˜ξ‚π‘‡ξ€·π›Ύi.o.=𝑃2ξ€·π‘‘π‘˜ξ€Έξ€Έβ‰€π‘‘π‘˜ξ€Ύξ€Έπ‘‡ξ€·π‘‘i.o.=π‘ƒξ‚€ξ‚†π‘˜ξ€Έβ‰€ξ€·logπ‘‘π‘˜ξ€Έπœ€π‘‘π‘˜1/𝛽i.o.=1.(3.16)
Note that π‘ˆ1ξ‚€ξ€·logπ‘‘π‘˜ξ€Έβˆ’πœ€/4π‘‘π›½π‘˜ξ‚βˆΌξ€·logπ‘‘π‘˜ξ€Έβˆ’πœ€/(4𝛽)π‘‘π‘˜ξ‚€ξ‚€ξ€·loglogπ‘‘π‘˜ξ€Έβˆ’πœ€/4π‘‘π›½π‘˜ξ‚ξ‚πœŒβ‰€π‘ˆ1𝛾2ξ€·π‘‘π‘˜ξ€Έξ€Έ=π‘‘π‘˜.(3.17) Thus, by noting π‘ˆ1 increasing, ξ€·logπ‘‘π‘˜ξ€Έβˆ’πœ€/(4𝛼)π‘‘π‘˜π›½/𝛼≀𝛾2ξ€·π‘‘π‘˜ξ€Έ1/𝛼.(3.18) Hence, by Lemma 2.2, ξ€·logπ‘‘π‘˜ξ€Έβˆ’πœ€/(2𝛼)π΅ξ‚€π‘‘π›½π‘˜ξ‚π΅ξ€·π›Ύ2ξ€·π‘‘π‘˜ξ€·ξ€Έξ€Έβ‰€πΆlogπ‘‘π‘˜ξ€Έβˆ’πœ€/(2𝛼)π‘‘π‘˜π›½/π›Όξ‚€ξ‚π»ξ‚€π‘‘π›½π‘˜ξ‚ξ‚1/𝛼𝛾2ξ€·π‘‘π‘˜ξ€Έξ€Έ1/𝛼𝐻𝛾2ξ€·π‘‘π‘˜ξ‚ξ€Έξ€Έ1/π›ΌβŸΆ0.(3.19) Similarly, by noting π‘‘π‘˜/π‘‘π‘˜βˆ’1β†’βˆž, one can have 𝐡𝛾2ξ€·π‘‘π‘˜ξ€Έξ€Έπ΅ξ€·π›Ύ2ξ€·π‘‘π‘˜ξ€Έβˆ’π›Ύ2ξ€·π‘‘π‘˜βˆ’1ξ€Έξ€ΈβŸΆ1.(3.20) Thus, by Lemma 2.4, we have π‘ƒξ€·π‘Šπ‘˜ξ€ΈβŽ›βŽœβŽœβŽπ‘†ξ€·π›Ύβ‰₯𝑃2ξ€·π‘‘π‘˜ξ€Έβˆ’π›Ύ2ξ€·π‘‘π‘˜βˆ’1β‰₯βŽ›βŽœβŽœβŽξ€·ξ€Έξ€Έlogπ‘‘π‘˜ξ€Έ(1βˆ’πœ€)/π›Όπ΅ξ‚€π‘‘π›½π‘˜ξ‚π΅ξ€·π›Ύ2ξ€·π‘‘π‘˜βŽžβŽŸβŽŸβŽ π΅ξ€·π›Ύξ€Έξ€Έ2ξ€·π‘‘π‘˜βŽžβŽŸβŽŸβŽ ξ‚€π‘†ξ€·π›Ύξ€Έξ€Έβ‰₯𝑃2ξ€·π‘‘π‘˜ξ€Έβˆ’π›Ύ2ξ€·π‘‘π‘˜βˆ’1β‰₯ξ€·ξ€Έξ€Έlogπ‘‘π‘˜ξ€Έ(1βˆ’πœ€/2)/𝛼𝐡𝛾2ξ€·π‘‘π‘˜ξ‚ξ€·ξ€Έξ€Έβ‰₯𝐢logπ‘‘π‘˜ξ€Έβˆ’(1βˆ’πœ€/4).(3.21) Therefore, βˆ‘π‘ƒ(π‘Šπ‘˜)=∞. Since the events {π‘Šπ‘˜} are independent, by the Borel-Cantelli lemma, we get 𝑃(π‘Šπ‘˜i.o.)=1.
Now, observe that π‘ƒξƒ©βˆžξšπ‘›=π‘šΞ›π‘˜ξƒͺβ‰₯π‘ƒβˆžξšπ‘›=π‘šξ‚€Ξ›π‘˜βˆ©ξ‚π‘…π‘˜ξ‚ξƒͺβ‰₯π‘ƒβˆžξšπ‘›=π‘šξ‚»ξ€·logπ‘‘π‘˜ξ€Έβˆ’(1βˆ’πœ€)/π›Όξ‚€π΅ξ‚€π‘‘π›½π‘˜ξ‚ξ‚βˆ’1𝑆𝛾2ξ€·π‘‘π‘˜ξ‚Όξƒͺβ‰₯1Γ—π‘ƒβˆžξ™π‘›=π‘šξ‚π‘…π‘˜ξƒͺβ‰₯π‘ƒβˆžξšπ‘›=π‘šπ‘Šπ‘˜ξƒͺξƒ©Γ—π‘ƒβˆžξ™π‘›=π‘šξ‚π‘…π‘˜ξƒͺ.(3.22) Therefore, by letting π‘šβ†’βˆž, we get π‘ƒξ€·Ξ›π‘˜ξ€Έβ‰₯ξ‚€π‘ƒξ€·π‘Ši.o.π‘˜ξ€Έξ‚€ξ‚‹π‘Ši.o.βˆ’π‘ƒπ‘˜π‘ƒξ‚€ξ‚π‘…i.o.ξ‚ξ‚π‘˜ξ‚i.o.=1,(3.23) which implies (3.14). The proof of Theorem 1.1 is now completed.

Remark 3.1. By the proof Theorem 1.1, (1.3) can be modified as follows: limsupπ‘‘β†’βˆž(log𝑑)βˆ’1/π›Όξ€·π΅ξ€·π‘‘π›½ξ€Έξ€Έβˆ’1𝑋(𝑑)=1a.s.(3.24) That is to say that the form of (1.3) is no rare and the variables (𝐡(𝑑𝛽))βˆ’1𝑋(𝑑) must be cut down additionally by the factors (log𝑑)βˆ’1/𝛼 to achieve a finite lim  sup.

Acknowledgments

The authors wish to express their deep gratitude to a referee for his/her valuable comments on an earlier version which improve the quality of this paper. K. S. Hwang is supported by the Korea Research Foundation Grant Funded by Korea Government (MOEHRD) (KRF-2006-353-C00004), and W. Wang is supported by NSFC Grant 11071076.