Abstract

In this paper we prove the equivalence and the strong convergence of an explicit Mann iterative process and a modified implicit iterative process for asymptotically πœ™-strongly pseudocontractive mappings in a uniformly smooth Banach space.

1. Introduction

Let 𝑋 be a Banach space and π‘‹βˆ— the dual space of 𝑋. Let 𝐽 denote the normalized duality mapping form 𝑋 into 2π‘‹βˆ— given by 𝐽(π‘₯)={π‘“βˆˆπ‘‹βˆ—βˆΆβŸ¨π‘₯,π‘“βŸ©=β€–π‘₯β€–2=‖𝑓‖2} for all π‘₯βˆˆπ‘‹, where βŸ¨β‹…,β‹…βŸ© denotes the generalized duality pairing.

In 1972, Goebel and Kirk [1] introduced the class of asymptotically nonexpansive mappings as follows.

Definition 1.1. Let 𝐾 be a subset of a Banach space 𝑋. A mapping π‘‡βˆΆπΎβ†’πΎ is said asymptotically nonexpansive if, for each π‘₯,π‘¦βˆˆπΎ, ‖𝑇𝑛π‘₯βˆ’π‘‡π‘›π‘¦β€–β‰€π‘˜π‘›β€–π‘₯βˆ’π‘¦β€–,(1.1) where {π‘˜π‘›}π‘›βŠ‚[1,∞) is a sequence of real numbers converging to 1.

Their scope was to extend the well-known Browder’s fixed point theorem [2] to this class of mappings.

This class is really more general than the class of nonexpansive mappings (see [1]).

In 1991, Schu [3] introduced the class of asymptotically pseudocontractive mappings.

Definition 1.2 (see [3]). Let 𝑋 be a normed space, πΎβŠ‚π‘‹, and {π‘˜π‘›}π‘›βŠ‚[1,∞). A mapping π‘‡βˆΆπΎβ†’πΎ is said to be asymptotically pseudocontractive with the sequence {π‘˜π‘›}𝑛 if and only if limπ‘›β†’βˆžπ‘˜π‘›=1 and, for all π‘›βˆˆβ„• and all π‘₯,π‘¦βˆˆπΎ, there exists 𝑗(π‘₯βˆ’π‘¦)∈𝐽(π‘₯βˆ’π‘¦) such that βŸ¨π‘‡π‘›π‘₯βˆ’π‘‡π‘›π‘¦,𝑗(π‘₯βˆ’π‘¦)βŸ©β‰€π‘˜π‘›β€–π‘₯βˆ’π‘¦β€–2,(1.2) where 𝐽 is the normalized duality mapping.

Obviously every asymptotically nonexpansive mapping is asymptotically pseudocontractive but the converse is not valid: it is well known that π‘‡βˆΆ[0,1]β†’[0,1] defined by 𝑇π‘₯=(1βˆ’π‘₯2/3)3/2 is not Lipschitz but asymptotically pseudocontractive [4].

In [3], Schu proved the following.

Theorem 1.3 (see [3]). Let 𝐻 be a Hilbert space and π΄βŠ‚π» closed and convex; 𝐿>0; π‘‡βˆΆπ΄β†’π΄ completely continuous, uniformly L-Lipschitzian and asymptotically pseudocontractive with sequence {π‘˜π‘›}π‘›βˆˆ[1,∞); π‘žπ‘›βˆΆ=2π‘˜π‘›βˆ’1 for all π‘›βˆˆβ„•; βˆ‘π‘›(π‘ž2π‘›βˆ’1)<∞; {𝛼𝑛}𝑛,{𝛽𝑛}π‘›βˆˆ[0,1]; πœ–β‰€π›Όπ‘›β‰€π›½π‘›β‰€π‘ for all π‘›βˆˆβ„•, some πœ–>0 and some π‘βˆˆ(0,πΏβˆ’2[√1+𝐿2βˆ’1]); π‘₯1∈𝐴; for all π‘›βˆˆβ„• define π‘§π‘›βˆΆ=𝛽𝑛𝑇𝑛π‘₯𝑛+ξ€·1βˆ’π›½π‘›ξ€Έπ‘₯𝑛,π‘₯𝑛+1∢=𝛼𝑛𝑇𝑛𝑧𝑛+ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛.(1.3) Then, {π‘₯𝑛}𝑛 converges strongly to some fixed point of 𝑇.

From 1991 to 2009, no fixed point theorem for asymptotically pseudocontractive mappings had been proved. First Zhou, in [5], completed this lack in the setting of Hilbert spaces proving (1) a fixed-point theorem for an asymptotically pseudocontractive mapping that is also uniformly L-Lipschitzian and uniformly asymptotically regular; (2) that the set of fixed points of 𝑇 is closed and convex; (3) the strong convergence of a CQ-iterative method. The literature on asymptotical-type mappings is wide (see e.g., [6–11]).

In 1974, Deimling [12], studying the zeros of accretive operators, introduced the class of πœ‘-strongly accretive operators.

Definition 1.4. An operator 𝐴 defined on a subset 𝐾 of a Banach space 𝑋 is called πœ‘-strongly accretive if )⟨𝐴π‘₯βˆ’π΄π‘¦,𝑗(π‘₯βˆ’π‘¦)⟩β‰₯πœ‘(β€–π‘₯βˆ’π‘¦β€–β€–π‘₯βˆ’π‘¦β€–,(1.4) where πœ‘βˆΆβ„+→ℝ+ is a strictly increasing function such that πœ‘(0)=0 and 𝑗(π‘₯βˆ’π‘¦)∈𝐽(π‘₯βˆ’π‘¦).

Note that, in the special case in which πœ‘(𝑑)=π‘˜π‘‘, π‘˜βˆˆ(0,1), we obtain a strongly accretive operator.

Since an operator 𝐴 is a strongly accretive operators if and only if (πΌβˆ’π΄) is a strongly pseudocontractive mappings (i.e., ⟨(πΌβˆ’π΄)π‘₯βˆ’(πΌβˆ’π΄)𝑦,𝑗(π‘₯βˆ’π‘¦)βŸ©β‰€π‘˜β€–π‘₯βˆ’π‘¦β€–2, π‘˜<1), taking in account Definition 1.4, it is natural to study the class of πœ‘-pseudocontractive mappings, that is, the maps such thatβŸ¨π‘‡π‘₯βˆ’π‘‡π‘¦,𝑗(π‘₯βˆ’π‘¦)βŸ©β‰€β€–π‘₯βˆ’π‘¦β€–2()βˆ’πœ‘β€–π‘₯βˆ’π‘¦β€–β€–π‘₯βˆ’π‘¦β€–,(1.5) where πœ‘βˆΆβ„+→ℝ+ is a strictly increasing function such that πœ‘(0)=0. Of course the set of fixed points for this mappings contains, at most, only one point.

Here our attention is on the class of the asymptotically πœ™-strongly pseudocontractions define as follows.

Definition 1.5. If 𝑋 is a Banach space and 𝐾 is a subset of 𝑋, a mapping π‘‡βˆΆπΎβ†’πΎ is said asymptotically πœ™-strongly pseudocontraction if βŸ¨π‘‡π‘›π‘₯βˆ’π‘‡π‘›π‘¦,𝑗(π‘₯βˆ’π‘¦)βŸ©β‰€π‘˜π‘›β€–π‘₯βˆ’π‘¦β€–2(βˆ’πœ™β€–π‘₯βˆ’π‘¦β€–),(1.6) where 𝑗(π‘₯βˆ’π‘¦)∈𝐽(π‘₯βˆ’π‘¦), {π‘˜π‘›}π‘›βŠ‚[1,∞) is converging to one and πœ™βˆΆ[0,∞)β†’[0,∞) is strictly increasing and such that πœ™(0)=0.

One can note that if 𝑇 has fixed points then it is unique. In fact if π‘₯,𝑧 are fixed points for 𝑇, then, for every π‘›βˆˆβ„•,β€–π‘₯βˆ’π‘§β€–2=βŸ¨π‘‡π‘›π‘₯βˆ’π‘‡π‘›π‘§,𝑗(π‘₯βˆ’π‘§)βŸ©β‰€π‘˜π‘›β€–π‘₯βˆ’π‘¦β€–2(),βˆ’πœ™β€–π‘₯βˆ’π‘¦β€–(1.7) so, passing 𝑛 to +∞, it resultsβ€–π‘₯βˆ’π‘§β€–2≀‖π‘₯βˆ’π‘§β€–2(βˆ’πœ™β€–π‘₯βˆ’π‘¦β€–)βŸΉβˆ’πœ™(β€–π‘₯βˆ’π‘¦β€–)β‰₯0.(1.8) Since πœ™βˆΆ[0,∞)β†’[0,∞) is strictly increasing and πœ™(0)=0, then π‘₯=𝑧.

We now give two examples.

Example 1.6. The mapping 𝑇π‘₯=π‘₯/(π‘₯+1), where π‘₯∈[0,1], is asymptotically πœ™-strongly pseudocontraction with π‘˜π‘›=1, for all π‘›βˆˆβ„• and πœ™(𝑑)=𝑑3/(1+𝑑). However, 𝑇 is not strongly pseudocontractive, see [13].

Example 1.7. The mapping 𝑇π‘₯=π‘₯/(1+𝛼π‘₯), where π‘₯∈[0,1] and 𝛼 is closing to zero, is asymptotically πœ™-strongly pseudocontraction with π‘˜π‘›=1+1/𝛼𝑛, for all π‘›βˆˆβ„• and πœ™(π‘₯)=π‘₯3/(1+π‘₯). However, 𝑇 is not strongly pseudocontractive and nor is the πœ™-strongly pseudocontraction.

Proof. First we prove that 𝑇 is not strongly pseudocontractive. For arbitrary π‘˜<1, there exists π‘₯,π‘¦βˆˆ[0,1], such that 1(1+𝛼π‘₯)(1+𝛼𝑦)>π‘˜.(1.9) So we have 1βŸ¨π‘‡π‘₯βˆ’π‘‡π‘¦,𝑗(π‘₯βˆ’π‘¦)⟩=(1+𝛼π‘₯)(1+𝛼𝑦)(π‘₯βˆ’π‘¦)2>π‘˜β€–π‘₯βˆ’π‘¦β€–2.(1.10) Next we prove that 𝑇 is not πœ™-strongly pseudocontractive. Taking 𝑦=0, we have, for all π‘₯∈[0,1], π‘₯βŸ¨π‘‡π‘₯βˆ’π‘‡π‘¦,𝑗(π‘₯βˆ’π‘¦)⟩=2(1+𝛼π‘₯)β€–π‘₯βˆ’π‘¦β€–2π‘₯βˆ’πœ™(β€–π‘₯βˆ’π‘¦β€–)=2,1+π‘₯(1.11) Therefore, 𝑇 is not πœ™-strongly pseudocontractive. Finally, we prove that 𝑇 is asymptotically πœ™-strongly pseudocontraction.
For arbitrary π‘₯,π‘¦βˆˆ[0,1], without loss of generality, let π‘₯>𝑦. Then, βŸ¨π‘‡π‘›π‘₯βˆ’π‘‡π‘›=𝑦,𝑗(π‘₯βˆ’π‘¦)⟩(π‘₯βˆ’π‘¦)2,π‘˜(1+𝛼𝑛π‘₯)(1+𝛼𝑛𝑦)𝑛‖π‘₯βˆ’π‘¦β€–2(ξ‚€1βˆ’πœ™β€–π‘₯βˆ’π‘¦β€–)=1+𝛼𝑛(π‘₯βˆ’π‘¦)2βˆ’(π‘₯βˆ’π‘¦)3=ξ‚Έ11+(π‘₯βˆ’π‘¦)1+βˆ’π›Όπ‘›(π‘₯βˆ’π‘¦)ξ‚Ή1+(π‘₯βˆ’π‘¦)(π‘₯βˆ’π‘¦)2=1+1/𝛼𝑛+1/𝛼𝑛(π‘₯βˆ’π‘¦)1+(π‘₯βˆ’π‘¦)(π‘₯βˆ’π‘¦)2.(1.12) We only need to prove that 11+π‘₯βˆ’π‘¦β‰€(1+𝛼𝑛π‘₯)(1+𝛼𝑛𝑦)1++1𝛼𝑛.𝛼𝑛(π‘₯βˆ’π‘¦)(1.13) Using π‘₯>𝑦, this is easy.

Let us consider the well-known Mann iterative process defined as follows: for any given 𝑧0βˆˆπ‘‹, the sequence {𝑧𝑛}𝑛 defined by𝑧𝑛+1=ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘§π‘›+𝛼𝑛𝑇𝑛𝑧𝑛,𝑛β‰₯0.(1.14)

We can also introduce a modified implicit iterative process as follows: suppose 𝑇 is continuous, (π‘€ξ…žπ‘›)𝑛 is bounded, and let π‘§ξ…ž0 be an initial point. Thus, we defineπ‘§ξ…žπ‘›=ξ€·1βˆ’π›Όπ‘›βˆ’π›Ύπ‘›ξ€Έπ‘§ξ…žπ‘›βˆ’1+π›Όπ‘›π‘‡π‘›π‘§ξ…žπ‘›+π›Ύπ‘›π‘€ξ…žπ‘›,𝑛β‰₯1,(1.15) where {𝛼𝑛}𝑛 is a real sequence in [0,1] satisfying π›Όπ‘›π‘˜π‘›<1 for all 𝑛β‰₯1.

The algorithm is well defined. In fact, if 𝑇 is a continuous asymptotically strongly πœ™-pseudocontraction, for every fixed 𝑛, the mapping 𝑆𝑛 defined by 𝑆𝑛π‘₯∢=(1βˆ’π›Όπ‘›βˆ’π›Ύπ‘›)π‘§π‘›βˆ’1+𝛼𝑛𝑇𝑛π‘₯+𝛾𝑛𝑀𝑛 is such thatβŸ¨π‘†π‘›π‘₯βˆ’π‘†π‘›π‘¦,𝑗(π‘₯βˆ’π‘¦)⟩=βŸ¨π‘‡π‘›π‘₯βˆ’π‘‡π‘›π‘¦,𝑗(π‘₯βˆ’π‘¦)βŸ©β‰€π›Όπ‘›π‘˜π‘›β€–π‘₯βˆ’π‘¦β€–2,(1.16) that is, 𝑆𝑛 is a continuous strongly pseudocontraction, for every fixed 𝑛. Then (see Theorem  13.1 in [14]), there exists a unique fixed-point of 𝑆𝑛 for each 𝑛.

This modified implicit method is inspired to a wide literature.

In 1995, Liu [15] introduced the following modified Ishikawa method:𝑦𝑛=ξ€·1βˆ’π›½π‘›ξ€Έπ‘₯𝑛+𝛽𝑛𝑇𝑛π‘₯𝑛+𝑣𝑛,π‘₯𝑛+1=ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛+𝛼𝑛𝑇𝑛𝑦𝑛+𝑒𝑛,𝑛β‰₯0,(1.17) and he called it Ischikawa iteration process with errors (obviously posing 𝛽𝑛=0, he obtains the Mann iteration process with errors). This new class of methods with errors was studied, among the others, also by Chang in [16] in 2001, Chang et. al [17] in 2006, Gu in [18], Huang in [19], and Huang and Bu in 2007 [20].

In 2001, Chidume and Osilike [21] proved the strong convergence of the iterative method𝑦𝑛=π‘Žπ‘›π‘₯𝑛+𝑏𝑛𝑆π‘₯𝑛+𝑐𝑛𝑒𝑛,π‘₯𝑛+1=π‘Žξ…žπ‘›π‘₯𝑛+π‘ξ…žπ‘›π‘†π‘¦π‘›π‘ξ…žπ‘›π‘£π‘›,(1.18) where π‘Žπ‘›+𝑏𝑛+𝑐𝑛=π‘Žξ…žπ‘›+π‘ξ…žπ‘›+π‘ξ…žπ‘›=1, 𝑆π‘₯=π‘₯βˆ’π‘‡π‘₯+𝑓 (𝑇 a πœ™-strongly accretive operator), and π‘“βˆˆπ‘‹, to a solution of the equation 𝑇π‘₯=𝑓. Note that Chidume and Osilike did not use term with errors to indicate their methods.

In 2003, Chidume and Zegeye [22] studied the following iterative method:π‘₯𝑛+1=ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘₯𝑛+𝛼𝑛𝑇π‘₯π‘›βˆ’π›Όπ‘›πœƒπ‘›ξ€·π‘₯π‘›βˆ’π‘₯1ξ€Έ,(1.19) where 𝑇 is a Lipschitzian pseudocontractive map with fixed points. The authors proved the strong convergence of the method to a fixed point of 𝑇 under opportune hypotheses on the control sequences (πœƒπ‘›)𝑛,(πœ†π‘›)𝑛.

If we pose 𝑀𝑛=𝑧0 in (1.14) and 𝛾𝑛=π›Όπ‘›πœƒπ‘›, the modified Mann iterative process coincides with the Chideme and Zegeye’s iterative method.

In this paper, we prove the equivalence between the implicit and the explicit modified Mann iterative method which involves an asymptotically πœ™-strongly pseudocontractive mapping.

2. Preliminaries

Throughout this paper, we will assume that 𝑋 is a uniformly smooth Banach space. It is well known that, if 𝑋 is uniformly smooth, then the duality mapping 𝐽 is single-valued and is norm to norm uniformly continuous on any bounded subset of 𝑋. In the sequel, we shall denote the single-valued duality mapping by 𝑗.

For the sake of completeness, we recall some definitions and conclusions.

Definition 2.1. An 𝑋 is said to be a uniformly smooth Banach space if the smooth module of 𝑋, πœŒπ‘‹ξ‚†1(𝑑)=sup2(,β€–π‘₯βˆ’π‘¦β€–+β€–π‘₯+𝑦‖)βˆ’1βˆΆβ€–π‘₯‖≀1,‖𝑦‖≀𝑑(2.1) satisfies lim𝑑→0(πœŒπ‘‹(𝑑)/𝑑)=0.

Lemma 2.2 (see [23]). Let 𝑋 be a Banach space, and let π½βˆΆπ‘‹β†’2π‘‹βˆ— be the normalized duality mapping. Then, for any π‘₯,π‘¦βˆˆπ‘‹, we have β€–π‘₯+𝑦‖2≀‖π‘₯β€–2+2βŸ¨π‘¦,𝑗(π‘₯+𝑦)⟩,βˆ€π‘—(π‘₯+𝑦)∈𝐽(π‘₯+𝑦).(2.2)

Next lemma is a key for our proofs.

Lemma 2.3 (see [19]). Let πœ™βˆΆ[0,∞)β†’[0,∞) be a strictly increasing function with πœ™(0)=0, and let {π‘Žπ‘›}𝑛, {𝑏𝑛}𝑛, {𝑐𝑛}𝑛, and {𝑒𝑛}𝑛 be nonnegative real sequences such that limπ‘›β†’βˆžπ‘π‘›=0,𝑐𝑛𝑏=π‘œπ‘›ξ€Έ,βˆžξ“π‘›=1𝑏𝑛=∞,limπ‘›β†’βˆžπ‘’π‘›=0.(2.3) Suppose that there exists an integer 𝑁1>0 such that π‘Ž2𝑛+1β‰€π‘Ž2π‘›βˆ’2π‘π‘›πœ™ξ€·||π‘Žπ‘›+1βˆ’π‘’π‘›||ξ€Έ+𝑐𝑛,βˆ€π‘›β‰₯𝑁1,(2.4) then limπ‘›β†’βˆžπ‘Žπ‘›=0.

Proof. The proof is the same as in [19] but changing, in (2.4), (π‘Žπ‘›+1βˆ’π‘’π‘›) with |π‘Žπ‘›+1βˆ’π‘’π‘›|.

Lemma 2.4 (see [24]). Let {𝑠𝑛}𝑛,{𝑐𝑛}π‘›βŠ‚β„+, {π‘Žπ‘›}π‘›βŠ‚(0,1), and {𝑏𝑛}π‘›βŠ‚β„ be sequences such that 𝑠𝑛+1≀1βˆ’π‘Žπ‘›ξ€Έπ‘ π‘›+𝑏𝑛+𝑐𝑛,(2.5) for all 𝑛β‰₯0. Assume that βˆ‘π‘›π‘π‘›<∞. Then, the following results hold.(1)If π‘π‘›β‰€π›½π‘Žπ‘› (where 𝛽β‰₯0), then {𝑠𝑛}𝑛 is a bounded sequence.(2)If we have βˆ‘π‘›π‘Žπ‘›=∞ and limsup𝑛(𝑏𝑛/π‘Žπ‘›)≀0, then 𝑠𝑛→0 as π‘›β†’βˆž.

Remark 2.5. If, in Lemma 2.3, we choose 𝑒𝑛=0, for all 𝑛, πœ™(𝑑)=π‘˜π‘‘2 (π‘˜<1), then the inequality (2.4) becomes π‘Ž2𝑛+1β‰€π‘Ž2π‘›βˆ’2π‘π‘›π‘˜π‘Ž2𝑛+1+π‘π‘›βŸΉπ‘Ž2𝑛+1≀11+2π‘π‘›π‘˜π‘Ž2𝑛+𝑐𝑛1+2π‘π‘›π‘˜β‰€ξ‚΅1βˆ’2π‘π‘›π‘˜1+2π‘π‘›π‘˜ξ‚Άπ‘Ž2𝑛+𝑐𝑛1+2π‘π‘›π‘˜,(2.6) where π›Όπ‘›βˆΆ=2π‘π‘›π‘˜/(1+2π‘π‘›π‘˜) and π›½π‘›βˆΆ=𝑐𝑛/(1+2π‘π‘›π‘˜). In the hypotheses of Lemma 2.3, 𝛼𝑛→0 as π‘›β†’βˆž, βˆ‘π‘›π›Όπ‘›=∞ and limsup𝑛(𝛽𝑛/𝛼𝑛)=0. So we reobtain Lemma 2.4 in the case 𝑐𝑛=0.

3. Main Results

The ideas of the proofs of our main theorems take in account the papers of Chang and Chidume et al. [16, 21, 25].

Theorem 3.1. Let 𝑋 be a uniformly smooth Banach space, and let π‘‡βˆΆπ‘‹β†’π‘‹ be asymptotically πœ™-strongly pseudocontractive mapping with fixed point π‘₯βˆ— and bounded range.
Let {𝑣𝑛}𝑛 be the sequence defined by 𝑣0π‘£βˆˆπ‘‹,𝑛+1=ξ€·1βˆ’π›Όπ‘›ξ€Έπ‘£π‘›+𝛼𝑛𝑇𝑛𝑣𝑛,𝑛β‰₯0,(3.1) where {𝛼𝑛}π‘›βŠ‚[0,1] satisfies(i)limπ‘›β†’βˆžπ›Όπ‘›=0,(ii)βˆ‘βˆžπ‘›=1𝛼𝑛=∞. Then, for any initial point 𝑣0βˆˆπ‘‹, the sequence {𝑣𝑛}𝑛 strongly converges to π‘₯βˆ—.

Proof. By the boundedness of the range of 𝑇 and by Lemma 2.4, we have that {𝑣𝑛}𝑛 is bounded.
By Lemma 2.2, we observe that ‖‖𝑣𝑛+1βˆ’π‘₯βˆ—β€–β€–2≀1βˆ’π›Όπ‘›ξ€Έ2β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2+2π›Όπ‘›ξ«π‘‡π‘›π‘£π‘›βˆ’π‘₯βˆ—ξ€·π‘£,𝑗𝑛+1βˆ’π‘₯βˆ—β‰€ξ€·ξ€Έξ¬1βˆ’π›Όπ‘›ξ€Έ2β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2+2π›Όπ‘›ξ«π‘‡π‘›π‘£π‘›βˆ’π‘₯βˆ—ξ€·π‘£,𝑗𝑛+1βˆ’π‘₯βˆ—ξ€Έξ€·π‘£βˆ’π‘—π‘›βˆ’π‘₯βˆ—ξ€Έξ¬+2π›Όπ‘›ξ«π‘‡π‘›π‘£π‘›βˆ’π‘₯βˆ—ξ€·π‘£,π‘—π‘›βˆ’π‘₯βˆ—β‰€ξ€·ξ€Έξ¬1βˆ’π›Όπ‘›ξ€Έ2β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2+2π›Όπ‘›ξ«π‘‡π‘›π‘£π‘›βˆ’π‘₯βˆ—ξ€·π‘£,𝑗𝑛+1βˆ’π‘₯βˆ—ξ€Έξ€·π‘£βˆ’π‘—π‘›βˆ’π‘₯βˆ—ξ€Έξ¬+2π›Όπ‘›π‘˜π‘›β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ€Έ=ξ€·1+𝛼2π‘›βˆ’2π›Όπ‘›ξ€Έβ€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2+2π›Όπ‘›ξ«π‘‡π‘›π‘£π‘›βˆ’π‘₯βˆ—ξ€·π‘£,𝑗𝑛+1βˆ’π‘₯βˆ—ξ€Έξ€·π‘£βˆ’π‘—π‘›βˆ’π‘₯βˆ—ξ€Έξ¬+2π›Όπ‘›π‘˜π‘›β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ€Έ=β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2+𝛼2π‘›βˆ’2𝛼𝑛+2π›Όπ‘›π‘˜π‘›ξ€Έβ€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ€Έ+2π›Όπ‘›πœ‡π‘›,(3.2) where πœ‡π‘›βˆΆ=βŸ¨π‘‡π‘›π‘£π‘›βˆ’π‘₯βˆ—,𝑗(𝑣𝑛+1βˆ’π‘₯βˆ—)βˆ’π‘—(π‘£π‘›βˆ’π‘₯βˆ—)⟩. Let ξ‚»π‘€βˆΆ=maxsupπ‘›β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–,supπ‘›β€–β€–π‘‡π‘›π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ‚Ό.(3.3) We have ‖‖𝑣𝑛+1βˆ’π‘₯βˆ—β€–β€–2β‰€β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2+𝛼2𝑛+2π›Όπ‘›ξ€·π‘˜π‘›βˆ’1ξ€Έξ€Έπ‘€βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ€Έ+2π›Όπ‘›πœ‡π‘›=β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2βˆ’π›Όπ‘›πœ™ξ€·β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ€Έβˆ’π›Όπ‘›ξ€Ίπœ™ξ€·β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ€Έβˆ’2πœ‡π‘›βˆ’ξ€·π›Όπ‘›ξ€·π‘˜+2𝑛𝑀,βˆ’1ξ€Έξ€Έ(3.4) so we can observe the following.(1)πœ‡π‘›β†’0 as π‘›β†’βˆž. In fact from the inequality ||‖‖𝑣𝑛+1βˆ’π‘₯βˆ—β€–β€–βˆ’β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–||≀‖‖𝑣𝑛+1βˆ’π‘£π‘›β€–β€–β‰€π›Όπ‘›π‘€βŸΆ0,asπ‘›βŸΆβˆž,(3.5) and, since 𝑗 is norm to norm uniformly continuous, then 𝑗‖‖𝑣𝑛+1βˆ’π‘₯βˆ—β€–β€–ξ€Έξ€·β€–β€–π‘£βˆ’π‘—π‘›βˆ’π‘₯βˆ—β€–β€–ξ€ΈβŸΆ0,asπ‘›βŸΆβˆž.(3.6)(2)inf𝑛(β€–π‘£π‘›βˆ’π‘₯βˆ—β€–)=0. In fact, if we suppose that 𝜎∢=inf𝑛(β€–π‘£π‘›βˆ’π‘₯βˆ—β€–)>0, by the monotonicity of πœ™, πœ™ξ€·β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ€Έβ‰₯πœ™(𝜎)>0.(3.7) Thus, by (1) and by the hypotheses on 𝛼𝑛 and π‘˜π‘›, the value βˆ’π›Όπ‘›[πœ™(β€–π‘£π‘›βˆ’π‘₯βˆ—β€–)βˆ’2πœ‡π‘›βˆ’(𝛼𝑛+2(π‘˜π‘›βˆ’1))𝑀] is definitively negative. In this case, we conclude that there exists 𝑁>0 such that, for every 𝑛>𝑁, ‖‖𝑣𝑛+1βˆ’π‘₯βˆ—β€–β€–2β‰€β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2βˆ’π›Όπ‘›πœ™ξ€·β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–ξ€Έβ‰€β€–β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β€–2βˆ’π›Όπ‘›πœ™(𝜎)(3.8) and so π›Όπ‘›β€–β€–π‘£πœ™(𝜎)β‰€π‘›βˆ’π‘₯βˆ—β€–β€–2βˆ’β€–β€–π‘£π‘›+1βˆ’π‘₯βˆ—β€–β€–2.βˆ€π‘›>𝑁(3.9) In the same manner, we obtain that πœ™(𝜎)π‘šξ“π‘–=π‘π›Όπ‘–β‰€π‘šξ“π‘–=π‘ξ‚ƒβ€–β€–π‘£π‘–βˆ’π‘₯βˆ—β€–β€–2βˆ’β€–β€–π‘£π‘–+1βˆ’π‘₯βˆ—β€–β€–2ξ‚„=β€–β€–π‘£π‘βˆ’π‘₯βˆ—β€–β€–2βˆ’β€–β€–π‘£π‘šβˆ’π‘₯βˆ—β€–β€–2.(3.10) By the hypothesis βˆ‘π‘›π›Όπ‘›=∞, the previous is a contradiction and it follows that inf𝑛(β€–π‘£π‘›βˆ’π‘₯βˆ—β€–)=0.
Then, there exists a subsequence {π‘£π‘›π‘˜}π‘˜ of {𝑣𝑛}𝑛 that strongly converges to π‘₯βˆ—. This implies that, for every πœ–>0, there exists an index π‘›π‘˜(πœ–) such that, for all 𝑗β‰₯π‘›π‘˜(πœ–), β€–π‘£π‘›π‘—βˆ’π‘₯βˆ—β€–<πœ–.
Now, we will prove that the entire sequence {𝑣𝑛}𝑛 converges to π‘₯βˆ—. Since the sequences in (3.4) are null sequences but βˆ‘π‘›π›Όπ‘›=∞, then, for every πœ–>0, there exists an index 𝑛(πœ–) such that, for all 𝑛β‰₯𝑛(πœ–), it results that ||𝛼𝑛||<1ξ‚»2𝑀minπœ–,πœ™(πœ–/2)2ξ‚Ό,||π‘˜π‘›||<βˆ’1πœ™(πœ–/2),||πœ‡8𝑀𝑛||<πœ™(πœ–/2)8.(3.11) So, fixing πœ–>0, let π‘›βˆ—>max(π‘›π‘˜(πœ–),𝑛(πœ–)) with π‘›βˆ—=𝑛𝑗 for a certain 𝑛𝑗. We will prove, by induction, that β€–π‘£π‘›βˆ—+π‘–βˆ’π‘₯βˆ—β€–<πœ– for every π‘–βˆˆβ„•. Let 𝑖=1, if not, it results that β€–π‘£π‘›βˆ—+1βˆ’π‘₯βˆ—β€–β‰₯πœ–. Thus, β€–β€–π‘£πœ–β‰€π‘›βˆ—+1βˆ’π‘₯βˆ—β€–β€–β‰€β€–β€–π‘£π‘›βˆ—βˆ’π‘₯βˆ—β€–β€–+π›Όπ‘›βˆ—<β€–β€–π‘£π‘›βˆ—βˆ’π‘₯βˆ—β€–β€–+πœ–β€–β€–π‘£2𝑀𝑀=π‘›βˆ—βˆ’π‘₯βˆ—β€–β€–+πœ–2,(3.12) that is, β€–π‘£π‘›βˆ—βˆ’π‘₯βˆ—β€–>πœ–/2. By the strict increasing of πœ™, then πœ™(β€–π‘£π‘›βˆ—βˆ’π‘₯βˆ—β€–)>πœ™(πœ–/2). By (3.4), it results β€–β€–π‘£π‘›βˆ—+1βˆ’π‘₯βˆ—β€–β€–2<πœ–2βˆ’π›Όπ‘›βˆ—πœ™ξ€·β€–β€–π‘£π‘›βˆ—βˆ’π‘₯βˆ—β€–β€–ξ€Έβˆ’π›Όπ‘›βˆ—ξ€Ίπœ™ξ€·β€–β€–π‘£π‘›βˆ—βˆ’π‘₯βˆ—β€–β€–ξ€Έβˆ’2πœ‡π‘›βˆ—βˆ’ξ€·π›Όπ‘›βˆ—ξ€·π‘˜+2π‘›βˆ—π‘€ξ€».βˆ’1ξ€Έξ€Έ(3.13) We can note that 2πœ‡π‘›βˆ—+ξ€·π›Όπ‘›βˆ—ξ€·π‘˜+2π‘›βˆ—βˆ’1ξ€Έξ€Έπ‘€β‰€πœ™(πœ–/2)4+ξ‚΅πœ™(πœ–/2)+4π‘€πœ™(πœ–/2)ξ‚Ά4𝑀𝑀,(3.14) so πœ™ξ€·β€–β€–π‘£π‘›βˆ—βˆ’π‘₯βˆ—β€–β€–ξ€Έβˆ’2πœ‡π‘›βˆ—βˆ’ξ€·π›Όπ‘›βˆ—ξ€·π‘˜+2π‘›βˆ—ξ‚€πœ–βˆ’1𝑀β‰₯πœ™2ξ‚βˆ’3πœ™(πœ–/2)4>0.(3.15) Moreover, πœ™(β€–π‘£π‘›βˆ—βˆ’xβˆ—β€–)>πœ™(πœ–/2)/2>0, it results that β€–β€–π‘£π‘›βˆ—+1βˆ’π‘₯βˆ—β€–β€–2β‰€πœ–2.(3.16) This is absurd. Thus, β€–π‘£π‘›βˆ—+1βˆ’π‘₯βˆ—β€–<πœ–.
In the same manner, by induction, one obtains that, for every 𝑖β‰₯1, β€–π‘£π‘›βˆ—+π‘–βˆ’π‘₯βˆ—β€–<πœ–. So β€–π‘£π‘›βˆ’π‘₯βˆ—β€–β†’0.

Remark 3.2. Our result is similar to Schu’s theorem. However, our results hold in a more general setting of uniformly smooth Banach spaces, while the Schu’s result holds for completely continuous, uniformly Lipschitzian mappings which are asymptotically pseudocontractive.

Theorem 3.3. Let 𝑋 be a uniformly smooth Banach space, and let π‘‡βˆΆπ‘‹β†’π‘‹ be a continuous and asymptotically πœ™-strongly pseudocontractive mapping with fixed point π‘₯βˆ— and bounded range.
Let {𝑧𝑛} and {π‘§ξ…žπ‘›} be the sequences defined by (1.14) and (1.15), respectively, where {𝛼𝑛},{𝛾𝑛}βŠ‚[0,1] are null sequences satisfying(H1)limπ‘›β†’βˆžπ›Όπ‘›=0 and 𝛾𝑛=π‘œ(𝛼𝑛),(H2)βˆ‘βˆžπ‘›=1𝛼𝑛=∞, and such that π›Όπ‘›π‘˜π‘›<1, for every π‘›βˆˆβ„•.
Let us suppose moreover that the sequences {𝑀𝑛},{π‘€ξ…žπ‘›} are bounded in 𝑋.
Then, for any initial point π‘§ξ…ž0,𝑧0βˆˆπ‘‹, the following two assertions are equivalent.
(i)The Mann iteration sequence (1.14) converges to the fixed point π‘₯βˆ—.(ii)The modified implicit iteration sequence (1.15) converges to the fixed point π‘₯βˆ—.

Proof. By the boundedness of the range of 𝑇 and by Lemma 2.4, one obtains that our schemes are bounded. Let us define 𝑀=supπ‘›βŽ§βŽͺ⎨βŽͺβŽ©β€–β€–π‘‡π‘›π‘§π‘›βˆ’π‘‡π‘›π‘§ξ…žπ‘›β€–β€–,β€–β€–π‘‡π‘›π‘§π‘›βˆ’π‘§π‘›β€–β€–,β€–β€–π‘‡π‘›π‘§ξ…žπ‘›βˆ’π‘§ξ…žπ‘›β€–β€–,β€–β€–π‘‡π‘›π‘§ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1‖‖‖‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–β€–,β€–β€–π‘€ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–,β€–β€–π‘€ξ…žπ‘›β€–β€–βŽ«βŽͺ⎬βŽͺ⎭.(3.17) By the iteration schemes (1.14) and (1.15), we have ‖‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–β€–2≀‖‖1βˆ’π›Όπ‘›π‘§ξ€Έξ€·π‘›βˆ’π‘§ξ…žπ‘›βˆ’1ξ€Έ+π›Όπ‘›ξ€·π‘‡π‘›π‘§π‘›βˆ’π‘‡π‘›π‘§ξ…žπ‘›ξ€Έ+π›Ύπ‘›ξ€·π‘§ξ…žπ‘›βˆ’1βˆ’π‘€ξ…žπ‘›ξ€Έβ€–β€–2≀1βˆ’π›Όπ‘›ξ€Έ2β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2𝛼+2𝑛Tπ‘›π‘§π‘›βˆ’π‘‡π‘›π‘§ξ…žπ‘›ξ€Έ+π›Ύπ‘›ξ€·π‘§ξ…žπ‘›βˆ’1βˆ’π‘€ξ…žπ‘›ξ€Έξ€·π‘§,𝑗𝑛+1βˆ’π‘§ξ…žπ‘›β‰€ξ€·ξ€Έξ¬1βˆ’π›Όπ‘›ξ€Έ2β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2+2π›Όπ‘›ξ«π‘‡π‘›π‘§π‘›βˆ’π‘‡π‘›π‘§ξ…žπ‘›ξ€·π‘§,π‘—π‘›βˆ’π‘§ξ…žπ‘›ξ€Έξ¬+2π›Όπ‘›ξ«π‘‡π‘›π‘§π‘›βˆ’π‘‡π‘›π‘§ξ…žπ‘›ξ€·π‘§,𝑗𝑛+1βˆ’π‘§ξ…žπ‘›ξ€Έξ€·π‘§βˆ’π‘—π‘›βˆ’π‘§ξ…žπ‘›ξ€Έξ¬+2𝛾𝑛𝑀2≀1βˆ’π›Όπ‘›ξ€Έ2β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2+2π›Όπ‘›π‘˜π‘›β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–2βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έ+2π›Όπ‘›π‘€πœŽπ‘›+2𝛾𝑛𝑀2,(3.18) where πœŽπ‘›=‖𝑗(𝑧𝑛+1βˆ’π‘§ξ…žπ‘›)βˆ’π‘—(π‘§π‘›βˆ’π‘§ξ…žπ‘›)β€–. By (1.14), we have ‖‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›ξ€Έβˆ’ξ€·π‘§π‘›βˆ’π‘§ξ…žπ‘›ξ€Έβ€–β€–=‖‖𝑧𝑛+1βˆ’π‘§π‘›β€–β€–=β€–β€–π›Όπ‘›ξ€·π‘‡π‘›π‘§π‘›βˆ’π‘§π‘›ξ€Έβ€–β€–β‰€π›Όπ‘›π‘€.(3.19) It follows from (H1) that β€–(𝑧𝑛+1βˆ’π‘§ξ…žπ‘›)βˆ’(π‘§π‘›βˆ’π‘§ξ…žπ‘›)β€–β†’0 as π‘›β†’βˆž, which implies that πœŽπ‘›β†’0 as π‘›β†’βˆž. Moreover, for all 𝑛β‰₯0, β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–2β‰€ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–+β€–β€–π‘§ξ…žπ‘›βˆ’1βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έ2β‰€ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–+π›Όπ‘›β€–β€–π‘‡π‘›π‘§ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–+π›Ύπ‘›β€–β€–π‘€ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–ξ€Έ2β‰€ξ€Ίβ€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–+𝛼𝑛+𝛾𝑛𝑀2=β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2+𝛼𝑛+𝛾𝑛‖‖𝑧2π‘€π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–+𝛼𝑛+𝛾𝑛𝑀2ξ€»β‰€β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2𝛼+3𝑛+𝛾𝑛𝑀2.(3.20) Again by the boundedness of all components, we have that β€–β€–π‘§ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–=β€–β€–π›Όπ‘›ξ€·π‘‡π‘›π‘§ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1ξ€Έ+π›Ύπ‘›ξ€·π‘€ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1‖‖≀𝛼𝑛+𝛾𝑛𝑀,(3.21) and so ‖‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–β€–=β€–β€–ξ€·π‘§π‘›βˆ’π‘§ξ…žπ‘›ξ€Έ+ξ€·π‘§ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1ξ€Έβˆ’π›Όπ‘›ξ€·π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1ξ€Έ+π›Όπ‘›ξ€·π‘‡π‘›π‘§π‘›βˆ’π‘‡π‘›π‘§ξ…žπ‘›ξ€Έ+π›Ύπ‘›ξ€·π‘§ξ…žπ‘›βˆ’1βˆ’π‘€ξ…žπ‘›ξ€Έβ€–β€–β‰€β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–+β€–β€–π‘§ξ…žπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–+π›Όπ‘›β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–+π›Όπ‘›β€–β€–π‘‡π‘›π‘§π‘›βˆ’π‘‡π‘›π‘§ξ…žπ‘›β€–β€–+π›Ύπ‘›β€–β€–π‘§ξ…žπ‘›βˆ’1βˆ’π‘€ξ…žπ‘›β€–β€–β‰€β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€·π›Ό+3𝑛+𝛾𝑛𝑀.(3.22) Hence, we have that β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β‰₯‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–βˆ’π‘’π‘›, where 𝑒𝑛=3(𝛼𝑛+𝛾𝑛)𝑀. Note that 𝑒𝑛→0 as π‘›β†’βˆž. As in proof of Theorem 3.1, we distinguish two cases:(i)the set of index for which ‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–βˆ’π‘’π‘›β‰€0 contains infinite terms,(ii)the set of index for which ‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–βˆ’π‘’π‘›β‰€0 contains finite terms. In the first case (i), we can extract a subsequence such that β€–π‘§π‘›π‘˜βˆ’π‘§ξ…žπ‘›π‘˜βˆ’1β€–β†’0, as π‘˜β†’βˆž. Substituting (3.20) in (3.18), we have that ‖‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–β€–2≀1+𝛼2π‘›βˆ’2π›Όπ‘›ξ€Έβ€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2+2π›Όπ‘›π‘˜π‘›β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2𝛼+6𝑛+𝛾𝑛𝑀2π›Όπ‘›π‘˜π‘›βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έ+2π›Όπ‘›π‘€πœŽπ‘›+2𝛾𝑛𝑀2β‰€β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2+𝛼2𝑛+2π›Όπ‘›ξ€·π‘˜π‘›β€–β€–π‘§βˆ’1ξ€Έξ€Έπ‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2𝛼+6𝑛+𝛾𝑛𝑀2π›Όπ‘›π‘˜βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έ+2π›Όπ‘›π‘€πœŽπ‘›+2𝛾𝑛𝑀2β‰€β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2βˆ’π›Όπ‘›πœ™ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έ+2𝛾𝑛𝑀2βˆ’π›Όπ‘›ξ‚ƒπœ™ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έβˆ’π›Όπ‘›π‘€2βˆ’2𝑀2ξ€·π‘˜π‘›ξ€Έξ€·π›Όβˆ’1βˆ’6𝑛+𝛾𝑛𝑀2π‘˜βˆ’2π‘€πœŽπ‘›ξ‚„=β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2βˆ’π›Όπ‘›πœ™ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έ+2𝛾𝑛𝑀2βˆ’π›Όπ‘›ξ‚ƒπœ™ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έβˆ’7π‘˜π›Όπ‘›π‘€2βˆ’2𝑀2ξ€·π‘˜π‘›ξ€Έβˆ’1βˆ’6𝛾𝑛𝑀2π‘˜βˆ’2π‘€πœŽπ‘›ξ‚„,(3.23) where π‘˜=supπ‘›π‘˜π‘›. Again by (3.20), for every πœ–>0, there exists an index 𝑙 such that, if 𝑗>𝑙, β€–β€–π‘§π‘›π‘—βˆ’π‘§ξ…žπ‘›π‘—βˆ’1‖‖‖‖𝑧<πœ–,π‘›π‘—βˆ’π‘§ξ…žπ‘›π‘—β€–β€–.<2πœ–(3.24) By hypotheses on the control sequence, with the same πœ–>0, there exists an index 𝑁 such that definitively ||𝛼𝑛||ξ‚»πœ–<min,12π‘€πœ™(πœ–/2)56𝑀2π‘˜ξ‚Ό,||𝛾𝑛||ξ‚»πœ–<min,12π‘€πœ™(πœ–/2)48𝑀2π‘˜ξ‚Ό,||||𝛾𝑛𝛼𝑛||||<πœ™(πœ–/2)4𝑀2,||π‘˜π‘›||<βˆ’1πœ™(πœ–/2)16𝑀2,||πœŽπ‘›||<πœ™(πœ–/2).16𝑀(3.25) So take π‘›βˆ—>max{𝑛𝑙,𝑁} with π‘›βˆ—=𝑛𝑗 for a certain 𝑗.
We can prove that ‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–β†’0 as π‘›β†’βˆž proving that, for every 𝑖β‰₯0 it results β€–π‘§π‘›βˆ—+π‘–βˆ’π‘§ξ…žπ‘›βˆ—+π‘–βˆ’1β€–<πœ–.
Let 𝑖= 1. If we suppose that β€–π‘§π‘›βˆ—+1βˆ’π‘§ξ…žπ‘›βˆ—β€–β‰₯πœ–, it results that β€–β€–π‘§πœ–β‰€π‘›βˆ—+1βˆ’π‘§ξ…žπ‘›βˆ—β€–β€–β‰€β€–β€–π‘§π‘›βˆ—βˆ’π‘§ξ…žπ‘›βˆ—β€–β€–ξ€·π›Ό+3π‘›βˆ—+π›Ύπ‘›βˆ—ξ€Έβ€–β€–π‘§π‘€<π‘›βˆ—βˆ’π‘§ξ…žπ‘›βˆ—β€–β€–+πœ–2,(3.26) so β€–π‘§π‘›βˆ—βˆ’π‘§ξ…žπ‘›βˆ—β€–>πœ–/2. In consequence of this, πœ™(β€–π‘§π‘›βˆ—βˆ’π‘§ξ…žπ‘›βˆ—β€–)>πœ™(πœ–/2).
In (3.23), we note that7π‘˜π›Όπ‘›βˆ—π‘€2+2𝑀2ξ€·π‘˜π‘›βˆ—ξ€Έβˆ’1+6π›Ύπ‘›βˆ—π‘€2π‘˜+2π‘€πœŽπ‘›βˆ—β‰€7π‘˜π‘€2πœ™(πœ–/2)56𝑀2π‘˜+2𝑀2πœ™(πœ–/2)16𝑀2+6𝑀2π‘˜πœ™(πœ–/2)48𝑀2π‘˜+2π‘€πœ™(πœ–/2)=16π‘€πœ™(πœ–/2)84=πœ™(πœ–/2)2,(3.27) so πœ™ξ€·β€–β€–π‘§π‘›βˆ—βˆ’π‘§ξ…žπ‘›βˆ—β€–β€–ξ€Έβˆ’7π‘˜π›Όπ‘›βˆ—π‘€2βˆ’2𝑀2ξ€·π‘˜π‘›βˆ—ξ€Έβˆ’1βˆ’6π›Ύπ‘›βˆ—π‘€2π‘˜βˆ’2π‘€πœŽπ‘›βˆ—β‰₯πœ™(πœ–/2)2,(3.28) Hence, in (3.23), remains β€–β€–π‘§π‘›βˆ—+1βˆ’π‘§ξ…žπ‘›βˆ—β€–β€–2β‰€πœ–2βˆ’π›Όπ‘›βˆ—πœ™ξ€·β€–β€–π‘§π‘›βˆ—βˆ’π‘§ξ…žπ‘›βˆ—β€–β€–ξ€Έ+2π›Ύπ‘›βˆ—π‘€2.(3.29) In the same manner, πœ™ξ€·β€–β€–π‘§π‘›βˆ—βˆ’π‘§ξ…žπ‘›βˆ—β€–β€–ξ€Έπ›Ύβˆ’2π‘›βˆ—π›Όπ‘›βˆ—π‘€2ξ‚€πœ–>πœ™2ξ‚βˆ’πœ™(πœ–/2)2>0,(3.30) so β€–β€–π‘§π‘›βˆ—+1βˆ’π‘§ξ…žπ‘›βˆ—β€–β€–2β‰€πœ–2.(3.31) This is absurd. By the same idea and by using the induction method, we obtain that β€–π‘§π‘›βˆ—+π‘–βˆ’π‘§ξ…žπ‘›βˆ—+π‘–βˆ’1β€–<πœ–, for every 𝑖β‰₯0. This assure that ‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–β†’0. In the second case (ii), definitively, ‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–βˆ’π‘’π‘›β‰₯0, then, from the strict increasing function πœ™, we have πœ™ξ€·β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›β€–β€–ξ€Έξ€·β€–β€–π‘§β‰₯πœ™π‘›+1βˆ’π‘§ξ…žπ‘›β€–β€–βˆ’π‘’π‘›ξ€Έ.(3.32) Substituting (3.32) and (3.20) into (3.18) and simplifying, we have ‖‖𝑧𝑛+1βˆ’π‘§ξ…žπ‘›β€–β€–2β‰€β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2+𝛼2π‘›β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2+2π›Όπ‘›ξ€·π‘˜π‘›ξ€Έβ€–β€–π‘§βˆ’1π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2+6π›Όπ‘›π‘˜π‘›ξ€·π›Όπ‘›+𝛾𝑛𝑀2βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘§π‘›+1βˆ’π‘§ξ…žπ‘›β€–β€–βˆ’π‘’π‘›ξ€Έ+2π›Όπ‘›πœŽπ‘›π‘€+2𝛾𝑛𝑀2β‰€β€–β€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–β€–2βˆ’2π›Όπ‘›πœ™ξ€·β€–β€–π‘§π‘›+1βˆ’π‘§ξ…žπ‘›β€–β€–βˆ’π‘’π‘›ξ€Έ+𝛼2𝑛𝑀2+2π›Όπ‘›ξ€·π‘˜π‘›ξ€Έπ‘€βˆ’12+6π›Όπ‘›π‘˜π‘›ξ€·π›Όπ‘›+𝛾𝑛𝑀2+2π›Όπ‘›πœŽπ‘›π‘€+2𝛾𝑛𝑀2.(3.33) By virtue of Lemma 2.3, we obtain that limπ‘›β†’βˆžβ€–π‘§π‘›βˆ’π‘§ξ…žπ‘›βˆ’1β€–=0.