Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 154387, 15 pages
http://dx.doi.org/10.1155/2013/154387
Research Article

Dynamical Analysis of SIR Epidemic Models with Distributed Delay

1College of Science, Shandong University of Science and Technology, Qingdao 266590, China
2College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Received 16 December 2012; Revised 18 June 2013; Accepted 23 June 2013

Academic Editor: Han H. Choi

Copyright © 2013 Wencai Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics,” Proceedings of the Royal Society A, vol. 115, pp. 700–721, 1927. View at Google Scholar
  2. E. Beretta and Y. Takeuchi, “Global stability of an SIR epidemic model with time delays,” Journal of Mathematical Biology, vol. 33, no. 3, pp. 250–260, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. E. Beretta and Y. Takeuchi, “Convergence results in SIR epidemic models with varying population sizes,” Nonlinear Analysi: Theory, Methods & Applications, vol. 28, no. 12, pp. 1909–1921, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. K. L. Cooke, “Stability analysis for a vector disease model,” The Rocky Mountain Journal of Mathematics, vol. 9, no. 1, pp. 31–42, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. W. M. Liu, S. A. Levin, and Y. Iwasa, “Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,” Journal of Mathematical Biology, vol. 23, no. 2, pp. 187–204, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. M. Y. Li, J. R. Graef, L. Wang, and J. Karsai, “Global dynamics of a SEIR model with varying total population size,” Mathematical Biosciences, vol. 160, no. 2, pp. 191–213, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. W. B. Ma, Y. Takeuchi, T. Hara, and E. Beretta, “Permanence of an SIR epidemic model with distributed time delays,” The Tohoku Mathematical Journal, vol. 54, no. 4, pp. 581–591, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. W. B. Ma, M. Song, and Y. Takeuchi, “Global stability of an SIR epidemic model with time delay,” Applied Mathematics Letters, vol. 17, no. 10, pp. 1141–1145, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. P. Yongzhen, L. Shuping, L. Changguo, and S. Z. Chen, “The effect of constant and pulse vaccination on an SIR epidemic model with infectious period,” Applied Mathematical Modelling, vol. 35, no. 8, pp. 3866–3878, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. M. Song, W. B. Ma, and Y. Takeuchi, “Permanence of a delayed SIR epidemic model with density dependent birth rate,” Journal of Computational and Applied Mathematics, vol. 201, no. 2, pp. 389–394, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. B. Shulgin, L. Stone, and Z. Agur, “Pulse vaccination strategy in the SIR epidemic model,” Bulletin of Mathematical Biology, vol. 60, no. 6, pp. 1123–1148, 1998. View at Google Scholar · View at Scopus
  12. Y. Takeuchi, W. B. Ma, and E. Beretta, “Global asymptotic properties of a delay SIR epidemic model with finite incubation times,” Nonlinear Analysis: Theory, Methods & Applications, vol. 42, pp. 931–947, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. Y. N. Xiao, L. S. Chen, and F. ven den Bosch, “Dynamical behavior for a stage-structured SIR infectious disease model,” Nonlinear Analysis: Real World Applications, vol. 3, no. 2, pp. 175–190, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. H. Zhang, L. Chen, and J. J. Nieto, “A delayed epidemic model with stage-structure and pulses for pest management strategy,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1714–1726, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. T. Zhang and Z. Teng, “Global behavior and permanence of SIRS epidemic model with time delay,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1409–1424, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. T. L. Zhang and Z. D. Teng, “Permanence and extinction for a nonautonomous SIRS epidemic model with time delay,” Applied Mathematical Modelling, vol. 33, no. 2, pp. 1058–1071, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. T. Q. Zhang, X. Z. Meng, T. H. Zhang, and Y. Song, “Global dynamics for a new high-dimensional SIR model with distributed delay,” Applied Mathematics and Computation, vol. 218, no. 24, pp. 11806–11819, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  18. K. M. Charlton, S. Nadin-Davis, G. A. Casey, and A. I. Wandeler, “The long incubation period in rabies: delayed progression of infection in muscle at the site of exposure,” Acta Neuropathologica, vol. 94, no. 1, pp. 73–77, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. D. B. Fishbein, “Rabies in humans,” in The Natural History of Rabies, G. M. Baer, Ed., pp. 519–549, CRC Press, Boca Raton, Fla, USA, 2nd edition, 1991. View at Google Scholar
  20. M. Fekadu, “Canine rabies,” in The Natural History of Rabies, G. M. Baer, Ed., pp. 267–278, CRC Press, Boca Raton, Fla, USA, 2nd edition, 1992. View at Google Scholar
  21. P. J. Grattan-Smith, W. J. O'Regan, P. S. J. Ellis, S. J. O'Flaherty, P. B. McIntyre, and C. J. Barnes, “Rabies: a second Australian case, with a long incubation period,” Medical Journal of Australia, vol. 156, no. 9, pp. 651–654, 1992. View at Google Scholar · View at Scopus
  22. H.-F. Huo and Z.-P. Ma, “Dynamics of a delayed epidemic model with non-monotonic incidence rate,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 2, pp. 459–468, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. C. A. de Quadros, J. K. Andrus, J.-M. Olive et al., “Eradication of poliomyelitis: progress in the Americas,” Pediatric Infectious Disease Journal, vol. 10, no. 3, pp. 222–229, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. M. de la Sen, A. Ibeas, and S. Alonso-Quesada, “On vaccination controls for the SEIR epidemic model,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2637–2658, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. M. Ramsay, N. Gay, E. Miller et al., “The epidemiology of measles in England and Wales: rationale for the 1994 national vaccination campaign,” Communicable Disease Report, vol. 4, no. 12, pp. R141–R146, 1994. View at Google Scholar · View at Scopus
  26. A. B. Sabin, “Measles, killer of millions in developing countries: strategy for rapid elimination and continuing control,” European Journal of Epidemiology, vol. 7, no. 1, pp. 1–22, 1991. View at Google Scholar · View at Scopus
  27. D. Bainov and P. Simeonov, System With Impulsive Effect: Stability, Theory and Applications, John Wiley & Sons, New York, NY, USA, 1989.
  28. S. J. Gao, L. S. Chen, J. J. Nieto, and A. Torres, “Analysis of a delayed epidemic model with pulse vaccination and saturation incidence,” Vaccine, vol. 24, no. 35-36, pp. 6037–6045, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Liu, Z. D. Teng, and W. B. Liu, “Dynamic behaviors of the periodic Lotka-Volterra competing system with impulsive perturbations,” Chaos, Solitons and Fractals, vol. 31, no. 2, pp. 356–370, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. Z. X. Li, Z. Zhao, and L. S. Chen, “Bifurcation of a three molecular saturated reaction with impulsive input,” Nonlinear Analysis: Real World Applications, vol. 12, no. 4, pp. 2016–2030, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. V. Lakshmikantham, D. D. Baĭnov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore,, 1989. View at MathSciNet
  32. J. J. Nieto and R. Rodríguez-López, “Hybrid metric dynamical systems with impulses,” Nonlinear Analysis: Theory, Methods & Applicationss, vol. 64, no. 2, pp. 368–380, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. J. J. Nieto and R. Rodríguez-López, “New comparison results for impulsive integro-differential equations and applications,” Journal of Mathematical Analysis and Applications, vol. 328, no. 2, pp. 1343–1368, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. X. Y. Song and Y. F. Li, “Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect,” Nonlinear Analysis: Real World Applications, vol. 9, no. 1, pp. 64–79, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. S. J. Gao, Z. D. Teng, and D. H. Xie, “Analysis of a delayed SIR epidemic model with pulse vaccination,” Chaos, Solitons & Fractals, vol. 40, no. 2, pp. 1004–1011, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  36. J. Hui and L.-S. Chen, “Impulsive vaccination of SIR epidemic models with nonlinear incidence rates,” Discrete and Continuous Dynamical Systems B, vol. 4, no. 3, pp. 595–605, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  37. Z. H. Lu, X. B. Chi, and L. S. Chen, “The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission,” Mathematical and Computer Modelling, vol. 36, no. 9-10, pp. 1039–1057, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. X. Z. Meng, L. S. Chen, and H. D. Cheng, “Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination,” Applied Mathematics and Computation, vol. 186, no. 1, pp. 516–529, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  39. X. Z. Meng and L. S. Chen, “The dynamics of a new SIR epidemic model concerning pulse vaccination strategy,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 582–597, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  40. A. D'Onofrio, “On pulse vaccination strategy in the SIR epidemic model with vertical transmission,” Applied Mathematics Letters, vol. 18, no. 7, pp. 729–732, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. X. Y. Song, Y. Jiang, and H. M. Wei, “Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays,” Applied Mathematics and Computation, vol. 214, no. 2, pp. 381–390, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  42. C. Castillo-Chavez and B. J. Song, “Dynamical models of tuberculosis and their applications,” Mathematical Biosciences and Engineering, vol. 1, no. 2, pp. 361–404, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  43. D. Baĭnov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66 of Pitman Monographs and Surveys in Pure and Applied Mathematics, 1993. View at MathSciNet