Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 214814, 14 pages
http://dx.doi.org/10.1155/2013/214814
Research Article

A Mutual-Evaluation Genetic Algorithm for Numerical and Routing Optimization

Department of Information Management, Chung Yuan Christian University, Jhongli 320, Taiwan

Received 9 May 2013; Accepted 22 July 2013

Academic Editor: Anyi Chen

Copyright © 2013 Chih-Hao Lin and Jiun-De He. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, Germany, 2nd edition, 1994. View at MathSciNet
  2. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, Mass, USA, 1996.
  3. L. Wei and M. Zhao, “A niche hybrid genetic algorithm for global optimization of continuous multimodal functions,” Applied Mathematics and Computation, vol. 160, no. 3, pp. 649–661, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. H. R. Mashhadi, H. M. Shanechi, and C. Lucas, “A new genetic algorithm with Lamarckian individual learning for generation scheduling,” IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1181–1186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Vasconcelos, J. A. Ramírez, R. H. C. Takahashi, and R. R. Saldanha, “Improvements in genetic algorithms,” IEEE Transactions on Magnetics, vol. 37, no. 5 I, pp. 3414–3417, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Tu and Y. Lu, “A robust stochastic genetic algorithm (StGA) for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 5, pp. 456–470, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 287–297, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact genetic algorithms,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 4, pp. 367–385, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Rimeharoen, D. Sutivong, and P. Chongstitvatana, “Updating strategy in compact genetic algorithm using moving average approach,” in Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, pp. 1–6, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Mich, USA, 1975. View at MathSciNet
  12. J. McCall, “Genetic algorithms for modelling and optimisation,” Journal of Computational and Applied Mathematics, vol. 184, no. 1, pp. 205–222, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. E. C. Yeh and Y.-Y. Shyu, “New genetic algorithm with statistical gene evaluation,” in Proceedings of the 1st International Joint Conference of NAFIPS/IFIS/NASA, pp. 409–410, December 1994. View at Scopus
  14. N. Kubota, K. Shimojima, and T. Fukuda, “Role of virus infection in virus-evolutionary genetic algorithm,” in Proceedings of IEEE International Conference on Evolutionary Computation (ICEC '96), pp. 182–187, May 1996. View at Scopus
  15. C. H. Lin, “A rough penalty genetic algorithm for constrained optimization,” Information Sciences, vol. 241, pp. 119–1137, 2013. View at Google Scholar
  16. R. Hinterding, “Gaussian mutation and self-adaption for numeric genetic algorithms,” in Proceedings of IEEE International Conference on Evolutionary Computation, pp. 384–388, December 1995. View at Scopus
  17. P. J. Angeline, “Evolutionary optimization versus particle swarm optimization: philosophy and performance differences,” in Proceedings of the Evolutionary Programming VII, pp. 601–610, 1998.
  18. T.-Y. Sun, C.-C. Liu, S.-T. Hsieh, C.-G. Lin, and K.-Y. Lee, “Cluster-based adaptive mutation mechanism to improve the performance of genetic algorithm,” in Proceedings of the 6th International Conference on Intelligent Systems Design and Applications (ISDA '06), pp. 461–466, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm with quantization for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 41–53, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-T. Tsai, T.-K. Liu, and J.-H. Chou, “Hybrid Taguchi-genetic algorithm for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 365–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Zhang and Y.-W. Leung, “An orthogonal genetic algorithm for multimedia multicast routing,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 1, pp. 53–62, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. E. M. El-Alfy, S. N. Mujahid, and S. Z. Selim, “A Pareto-based hybrid multiobjective evolutionary approach for constrained multipath traffic engineering optimization in MPLS/GMPLS networks,” Journal of Network and Computer Applications, vol. 36, pp. 1196–1207, 2013. View at Google Scholar
  23. H. Salama, “The multicast routing simulator,” The Real-Time Communication Project, 1997, http://rtcomm.csc.ncsu.edu/index.htm.
  24. B. M. Waxman, “Routing of multipoint connections,” IEEE Journal on Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622, 1988. View at Publisher · View at Google Scholar · View at Scopus