Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 241482, 12 pages
http://dx.doi.org/10.1155/2013/241482
Research Article

Simplified Boundary Element Method for Kinematic Response of Single Piles in Two-Layer Soil

1Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
2Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
3School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

Received 15 May 2013; Accepted 23 July 2013

Academic Editor: Ga Zhang

Copyright © 2013 Fayun Liang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. D. L. Finn, “A study of piles during earthquakes: issues of design and analysis,” Bulletin of Earthquake Engineering, vol. 3, no. 2, pp. 141–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Nikolaou, G. Mylonakis, G. Gazetas, and T. Tazoh, “Kinematic pile bending during earthquakes: analysis and field measurements,” Geotechnique, vol. 51, no. 5, pp. 425–440, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Mylonakis, “Simplified model for seismic pile bending at soil layer interfaces,” Soils and Foundations, vol. 41, no. 4, pp. 47–58, 2001. View at Google Scholar · View at Scopus
  4. B. A. Bradley, M. Cubrinovski, and J. J. M. Haskell, “Probabilistic pseudo-static analysis of pile foundations in liquefiable soils,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 10, pp. 1414–1425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Stewart, R. B. Seed, and G. L. Fenves, “Seismic soil-structure interaction in buildings. II: empirical findings,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 125, no. 1, pp. 38–48, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Tazoh, K. Shimizu, and T. Wakahara, “Seismic observations and analysis of grouped piles,” in Dynamic Response of Pile Foundations-Experiment, Analysis and Observation (GSP 11), pp. 1–20, 1987. View at Google Scholar
  7. K. Tokimatsu, “Behaviour and design of pile foundations subjected to earthquakes,” in Proceedings of the 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering,, vol. 1 and 2, Singapore, 2003.
  8. K. Tokimatsu, H. Suzuki, and M. Sato, “Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation,” Soil Dynamics and Earthquake Engineering, vol. 25, no. 7-10, pp. 753–762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. S. Maiorano, L. De Sanctis, S. Aversa, and A. Mandolini, “Kinematic response analysis of piled foundations under seismic excitation,” Canadian Geotechnical Journal, vol. 46, no. 5, pp. 571–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Dezi, S. Carbonari, and G. Leoni, “Kinematic bending moments in pile foundations,” Soil Dynamics and Earthquake Engineering, vol. 30, no. 3, pp. 119–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. de Sanctis, R. M. S. Maiorano, and S. Aversa, “A method for assessing kinematic bending moments at the pile head,” Earthquake Engineering & Structural Dynamics, vol. 39, no. 10, pp. 1133–1154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Di Laora, G. Mylonakis, and A. Mandolini, “Pile-head kinematic bending in layered soil,” Earthquake Engineering & Structural Dynamics, vol. 42, pp. 319–337, 2013. View at Google Scholar
  13. S. Sica, G. Mylonakis, and A. L. Simonelli, “Strain effects on kinematic pile bending in layered soil,” Soil Dynamics and Earthquake Engineering, vol. 49, pp. 231–242, 2013. View at Google Scholar
  14. R. Di Laora, A. Mandolini, and G. Mylonakis, “Insight on kinematic bending of flexible piles in layered soil,” Soil Dynamics and Earthquake Engineering, vol. 43, pp. 309–322, 2012. View at Google Scholar
  15. M. Saitoh, “Fixed-head pile bending by kinematic interaction and criteria for its minimization at optimal pile radius,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 131, no. 10, pp. 1243–1251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Di Laora and A. Mandolini, “Some remarks about Eurocode and Italian code about piled foundations in seismic area,” in Presented at the ERTC-12 Workshop on Evaluation of EC8, Athens, Greece, 2011.
  17. A. M. Kaynia and E. Kausel, “Dynamic stiffness and seismic response of pile groups,” Research Report R82-03, Massachusetts Institute of Technology, Cambridge, Mass, USA, 1982. View at Google Scholar
  18. K. Fan, G. Gazetas, A. Kaynia, E. Kausel, and S. Ahmad, “Kinematic seismic response of single piles and pile groups,” Journal of Geotechnical Engineering, vol. 117, no. 12, pp. 1860–1879, 1991. View at Google Scholar · View at Scopus
  19. M. Kavvadas and G. Gazetas, “Kinematic seismic response and bending of free-head piles in layered soil,” Geotechnique, vol. 43, no. 2, pp. 207–222, 1993. View at Google Scholar · View at Scopus
  20. M. H. El Naggar and M. Novak, “Nonlinear analysis for dynamic lateral pile response,” Soil Dynamics and Earthquake Engineering, vol. 15, no. 4, pp. 233–244, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Wu and W. D. L. Finn, “Dynamic nonlinear analysis of pile foundations using finite element method in the time domain,” Canadian Geotechnical Journal, vol. 34, no. 1, pp. 44–52, 1997. View at Google Scholar · View at Scopus
  22. B. K. Maheshwari, K. Z. Truman, M. H. El Naggar, and P. L. Gould, “Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction,” Soil Dynamics and Earthquake Engineering, vol. 24, no. 4, pp. 343–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Dezi, S. Carbonari, and G. Leoni, “A model for the 3D kinematic interaction analysis of pile groups in layered soils,” Earthquake Engineering & Structural Dynamics, vol. 38, no. 11, pp. 1281–1305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Millán and J. Domínguez, “Simplified BEM/FEM model for dynamic analysis of structures on piles and pile groups in viscoelastic and poroelastic soils,” Engineering Analysis with Boundary Elements, vol. 33, no. 1, pp. 25–34, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  25. F. Dezi, S. Carbonari, and G. Leoni, “Static equivalent method for the kinematic interaction analysis of single piles,” Soil Dynamics and Earthquake Engineering, vol. 30, no. 8, pp. 679–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Makris and G. Gazetas, “Dynamic pile-soil-pile interaction. Part II: lateral and seismic response,” Earthquake Engineering & Structural Dynamics, vol. 21, no. 2, pp. 145–162, 1992. View at Google Scholar · View at Scopus
  27. G. Mylonakis, A. Nikolaou, and G. Gazetas, “Soil-pile-bridge seismic interaction: kinematic and inertial effects. Part I: soft soil,” Earthquake Engineering & Structural Dynamics, vol. 26, no. 3, pp. 337–359, 1997. View at Google Scholar · View at Scopus
  28. A. Tabesh and H. G. Poulos, “Pseudostatic approach for seismic analysis of single piles,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, no. 9, pp. 757–765, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Juirnarongrit and S. A. Ashford, “Soil-pile response to blast-induced lateral spreading. II: analysis and assessment of the p-y method,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, no. 2, pp. 163–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Castelli and M. Maugeri, “Simplified approach for the seismic response of a pile foundation,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 135, no. 10, pp. 1440–1451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Sica, G. Mylonakis, and A. L. Simonelli, “Transient kinematic pile bending in two-layer soil,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 7, pp. 891–905, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. H. G. Poulos and E. H. Davis, “Pile foundation analysis and design,” 1980.
  33. H. Elahi, M. Moradi, H. G. Poulos, and A. Ghalandarzadeh, “Pseudostatic approach for seismic analysis of pile group,” Computers and Geotechnics, vol. 37, no. 1-2, pp. 25–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. D. Mindlin, “Force at a point in the interior of a semi-infinite solid,” Journal of Applied Physics, vol. 7, no. 5, pp. 195–202, 1936. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. M. A. Hashash, C. Phillips, and D. R. Groholski, “Recent advances in non-linear site response analysis,” in Proceedings of the 5th International Conference in Recent Advances in Geotechnical Eartqhuake Engineering and Soil Dynamics, 2010.
  36. L. F. Shampine, “Vectorized adaptive quadrature in MATLAB,” Journal of Computational and Applied Mathematics, vol. 211, no. 2, pp. 131–140, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  37. D. Park and Y. M. A. Hashash, “Soil damping formulation in nonlinear time domain site response analysis,” Journal of Earthquake Engineering, vol. 8, no. 2, pp. 249–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. G. A. Ordonez, “SHAKE2000: a computer program for the 1-D analysis of geotechnical earthquake engineering problems,” 2004.
  39. G. Wu and W. D. L. Finn, “Dynamic elastic analysis of pile foundations using finite element method in the frequency domain,” Canadian Geotechnical Journal, vol. 34, no. 1, pp. 34–43, 1997. View at Google Scholar · View at Scopus
  40. R. W. Boulanger, C. J. Curras, B. L. Kutter, D. W. Wilson, and A. Abghari, “Seismic soil-pile-structure interaction experiments and analyses,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 125, no. 9, pp. 750–759, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. P. G. Motion, “Pacific earthquake engineering research center,” Tech. Rep., University of California, Berkeley, Berkeley, Calif, USA, 2008. View at Google Scholar