Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 320392, 7 pages
http://dx.doi.org/10.1155/2013/320392
Research Article

A New Construction of Multisender Authentication Codes from Polynomials over Finite Fields

College of Science, Civil Aviation University of China, Tianjin 300300, China

Received 3 February 2013; Accepted 7 April 2013

Academic Editor: Yang Zhang

Copyright © 2013 Xiuli Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. N. Gilbert, F. J. MacWilliams, and N. J. A. Sloane, “Codes which detect deception,” The Bell System Technical Journal, vol. 53, pp. 405–424, 1974. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. Y. Desmedt, Y. Frankel, and M. Yung, “Multi-receiver/multi-sender network security: efficient authenticated multicast/feedback,” in Proceedings of the the 11th Annual Conference of the IEEE Computer and Communications Societies (Infocom '92), pp. 2045–2054, May 1992. View at Scopus
  3. K. Martin and R. Safavi-Naini, “Multisender authentication schemes with unconditional security,” in Information and Communications Security, vol. 1334 of Lecture Notes in Computer Science, pp. 130–143, Springer, Berlin, Germany, 1997. View at Google Scholar
  4. W. Ma and X. Wang, “Several new constructions of multi trasmitters authentication codes,” Acta Electronica Sinica, vol. 28, no. 4, pp. 117–119, 2000. View at Google Scholar
  5. G. J. Simmons, “Message authentication with arbitration of transmitter/receiver disputes,” in Advances in Cryptology—EUROCRYPT '87, Workshop on the Theory and Application of of Cryptographic Techniques, vol. 304 of Lecture Notes in Computer Science, pp. 151–165, Springer, 1988.
  6. S. Cheng and L. Chang, “Two constructions of multi-sender authentication codes with arbitration based linear codes to be published in,” WSEAS Transactions on Mathematics, vol. 11, no. 12, 2012. View at Google Scholar
  7. R. Safavi-Naini and H. Wang, “New results on multi-receiver authentication codes,” in Advances in Cryptology—EUROCRYPT '98 (Espoo), vol. 1403 of Lecture Notes in Comput. Sci., pp. 527–541, Springer, Berlin, Germany, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. R. Aparna and B. B. Amberker, “Multi-sender multi-receiver authentication for dynamic secure group communication,” International Journal of Computer Science and Network Security, vol. 7, no. 10, pp. 47–63, 2007. View at Google Scholar
  9. R. Safavi-Naini and H. Wang, “Bounds and constructions for multireceiver authentication codes,” in Advances in cryptology—ASIACRYPT'98 (Beijing), vol. 1514 of Lecture Notes in Comput. Sci., pp. 242–256, Springer, Berlin, Germany, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. S. Shen and L. Chen, Information and Coding Theory, Science press in China, 2002.
  11. J. J. Rotman, Advanced Modern Algebra, High Education Press in China, 2004.
  12. Z. Wan, Geometry of Classical Group over Finite Field, Science Press in Beijing, New York, NY, USA, 2002.