Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 346045, 11 pages
http://dx.doi.org/10.1155/2013/346045
Research Article

Uncertainty Analysis of Multiple Hydrologic Models Using the Bayesian Model Averaging Method

1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2National Research Center for Sustainable Hydropower Development, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Received 30 August 2013; Accepted 6 November 2013

Academic Editor: Y. P. Li

Copyright © 2013 Leihua Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WMO, “Intercomparison of conceptual models used in hydrological forecasting,” Operational Hydrology Report 7, WMO, Geneva, Switzerland, 1975. View at Google Scholar
  2. V. P. Singh, Computer Models of Watershed Hydrology, Water Resources Publications, 1995.
  3. D. J. Reid, “Combing three estimates of gross domestic products,” Economica, vol. 35, pp. 431–444, 1968. View at Google Scholar
  4. J. M. Bates and C. W. J. Granger, “The combination of forecasts,” Operational Research Quarterly, vol. 20, pp. 451–468, 1969. View at Google Scholar
  5. J. P. Dickinson, “Some statistical results in the combination of forecasts,” Operational Research Quarterly, vol. 24, no. 2, pp. 253–260, 1973. View at Google Scholar · View at Scopus
  6. A. Y. Shamseldin, K. M. O'Connor, and G. C. Liang, “Methods for combining the outputs of different rainfall-runoff models,” Journal of Hydrology, vol. 197, no. 1–4, pp. 203–229, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Xiong, A. Y. Shamseldin, and K. M. O'Connor, “A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system,” Journal of Hydrology, vol. 245, no. 1–4, pp. 196–217, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Madigan and A. E. Raftery, “Model selection and accounting for model uncertainty in graphical models using Occam’s window,” Journal of the American Statistical Association, vol. 89, pp. 1535–1546, 1994. View at Google Scholar
  9. A. E. Raftery, “Bayesian model selection in social research,” Sociological Methodology, vol. 25, pp. 111–163, 1995. View at Google Scholar
  10. D. Draper, “Assessment and propagation of model uncertainty,” Journal of the Royal Statistical Society B, vol. 57, no. 1, pp. 45–97, 1995. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. C. Fernández, E. Ley, and M. Steel, “Benchmark priors for Bayesian model averaging,” Journal of Econometrics, vol. 100, no. 2, pp. 381–427, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. K. Y. Yeung, R. E. Bumgarner, and A. E. Raftery, “Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data,” Bioinformatics, vol. 21, no. 10, pp. 2394–2402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. A. Wintle, M. A. McCarthy, C. T. Volinsky, and R. P. Kavanagh, “The use of bayesian model averaging to better represent uncertainty in ecological models,” Conservation Biology, vol. 17, no. 12, pp. 1579–1590, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. K. H. Morales, J. G. Ibrahim, C.-J. Chen, and L. M. Ryan, “Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water,” Journal of the American Statistical Association, vol. 101, no. 473, pp. 9–17, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. G. Koop and L. Tole, “Measuring the health effects of air pollution: to what extent can we really say that people are dying from bad air?” Journal of Environmental Economics and Management, vol. 47, no. 1, pp. 30–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. E. Raftery, F. Balabdaoui, T. Gneiting, and M. Polakowski, “Using bayesian model averaging to calibrate forecast ensembles,” Technical Report 440, Department of Statistics, University of Washington, 2003. View at Google Scholar
  17. V. Viallefont, A. E. Raftery, and S. Richardson, “Variable selection and Bayesian model averaging in case-control studies,” Statistics in Medicine, vol. 20, no. 21, pp. 3215–3230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian model averaging: a tutorial,” Statistical Science, vol. 14, no. 4, pp. 382–417, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. M. A. Clyde, “Bayesian model averaging and model search strategies,” in Bayesian Statistics, J. M. Bernardo, A. P. Dawid, J. O. Berger, and A. F. M. Smith, Eds., vol. 6, pp. 157–185, Oxford University Press, 1999. View at Google Scholar
  20. A. E. Raftery and Y. Zheng, “Discussion: performance of bayesian model averaging,” Journal of the American Statistical Association, vol. 98, no. 464, pp. 931–938, 2003. View at Google Scholar · View at Scopus
  21. S. P. Neuman, “Maximum likelihood Bayesian averaging of uncertain model predictions,” Stochastic Environmental Research and Risk Assessment, vol. 17, no. 5, pp. 291–305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. N. K. Ajami, Q. Duan, and S. Sorooshian, “An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction,” Water Resources Research, vol. 43, no. 1, Article ID W01403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Duan, N. K. Ajami, X. Gao, and S. Sorooshian, “Multi-model ensemble hydrologic prediction using Bayesian model averaging,” Advances in Water Resources, vol. 30, no. 5, pp. 1371–1386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Zhang, R. Srinivasan, and D. Bosch, “Calibration and uncertainty analysis of the SWAT model using genetic algorithms and Bayesian model averaging,” Journal of Hydrology, vol. 374, no. 3-4, pp. 307–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Beven and A. Binley, “The future of distributed models: model calibration and uncertainty prediction,” Hydrological Processes, vol. 6, no. 3, pp. 279–298, 1992. View at Google Scholar · View at Scopus
  26. H. V. Gupta, K. J. Beven, and T. Wagener, “Calibration and uncertainty estimation,” in Encyclopedia of Hydrological Sciences, John Wiley and Sons, Chichester, UK, 2003. View at Google Scholar
  27. L. Marshall, D. Nott, and A. Sharma, “A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling,” Water Resources Research, vol. 40, no. 2, Article ID W02501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Vrugt, H. V. Gupta, W. Bouten, and S. Sorooshian, “A Sshuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters,” Water Resources Research, vol. 39, no. 8, 2003. View at Google Scholar · View at Scopus
  29. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methuen, London, UK, 1975. View at MathSciNet
  30. F. H. S. Chiew, M. C. Peel, and A. W. Western, “Application and testing of the simple rainfall runoff model SIMHYD,” in Mathematical Models of Small Watershed Hydrology and Applications, V. P. Singh and D. Frevert, Eds., pp. 335–366, Water Resources Publications, 2002. View at Google Scholar
  31. Q. Duan, S. Sorooshian, and V. Gupta, “Effective and efficient global optimization for conceptual rainfall-runoff models,” Water Resources Research, vol. 28, no. 4, pp. 1015–1031, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Oudin, V. Andréassian, T. Mathevet, C. Perrin, and C. Michel, “Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations,” Water Resources Research, vol. 42, no. 7, Article ID W07410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Xiong, M. Wan, X. Wei, and K. M. O'Connor, “Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation,” Hydrological Sciences Journal, vol. 54, no. 5, pp. 852–871, 2009. View at Publisher · View at Google Scholar · View at Scopus