Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013, Article ID 414120, 9 pages
Research Article

Handing Tolerance Problem in Fault Diagnosis of Linear-Analogue Circuits with Accurate Statistics Approach

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Received 8 May 2013; Revised 10 October 2013; Accepted 15 October 2013

Academic Editor: Li Weili

Copyright © 2013 Xin Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The tolerance handling in analogue fault diagnosis is a challenging problem. Although lots of methods are effective for fault diagnosis, it is hard to apply them to the case with tolerance influence. In this paper, a robust statistics-based approach is introduced for tolerance-influencing fault diagnosis. The advantage of this proposed method is that it can accurately locate the data fusion among fault states. In addition, the results in analogue benchmark (e.g., linear voltage divider circuit) indicate that it is effective in fault diagnosis in accordance with given fault diagnostic requirements (e.g., fault diagnosis error, fault detection rate).