Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Mathematics
Volume 2013 (2013), Article ID 420536, 19 pages
http://dx.doi.org/10.1155/2013/420536
Research Article

A Model of Anisotropic Property of Seepage and Stress for Jointed Rock Mass

1Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China
2School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China

Received 30 March 2013; Revised 18 June 2013; Accepted 19 June 2013

Academic Editor: Pengcheng Fu

Copyright © 2013 Pei-tao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. G. Pariseau, S. Puri, and S. C. Schmelter, “A new model for effects of impersistent joint sets on rock slope stability,” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 2, pp. 122–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Amadei, “Importance of anisotropy when estimating and measuring in situ stresses in rock,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics, vol. 33, no. 3, pp. 293–325, 1996. View at Google Scholar · View at Scopus
  3. B. H. G. Brady and E. T. Brown, Rock Mechanics For Underground Mining, Springer, Amsterdam, The Netherlands, 2004.
  4. X. Zhang and D. J. Sanderson, “Numerical study of critical behaviour of deformation and permeability of fractured rock masses,” Marine and Petroleum Geology, vol. 15, no. 6, pp. 535–548, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. M. Tien and P. F. Tsao, “Preparation and mechanical properties of artificial transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, vol. 37, no. 6, pp. 1001–1012, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. F. J. Brosch, K. Schachner, M. Blümel, A. Fasching, and H. Fritz, “Preliminary investigation results on fabrics and related physical properties of an anisotropic gneiss,” Journal of Structural Geology, vol. 22, no. 11-12, pp. 1773–1787, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. G. E. Exadaktylos and K. N. Kaklis, “Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically,” International Journal of Rock Mechanics and Mining Sciences, vol. 38, no. 2, pp. 227–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. G. E. Exadaktylos, “On the constraints and relations of elastic constants of transversely isotropic geomaterials,” International Journal of Rock Mechanics and Mining Sciences, vol. 38, no. 7, pp. 941–956, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. K.-B. Min and L. Jing, “Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method,” International Journal of Rock Mechanics and Mining Sciences, vol. 40, no. 6, pp. 795–816, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Amadei, Rock Anisotropy and the Theory of Stress Measurements, Springer, 1983.
  11. M. Hakala, H. Kuula, and J. A. Hudson, “Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: a case study of the Olkiluoto mica gneiss, Finland,” International Journal of Rock Mechanics and Mining Sciences, vol. 44, no. 1, pp. 14–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. A. Witherspoon, J. S. Y. Wang, K. Iwai, and J. E. Gale, “Validity of cubic law for fluid flow in a deformable rock fracture,” Water Resources Research, vol. 16, no. 6, pp. 1016–1024, 1980. View at Google Scholar · View at Scopus
  13. M. Oda, “Permeability tensor for discontinuous rock masses,” Geotechnique, vol. 35, no. 4, pp. 483–495, 1985. View at Google Scholar · View at Scopus
  14. J. Sun and Z. Zhao, “Effects of anisotropic permeability of fractured rock masses on underground oil storage caverns,” Tunnelling and Underground Space Technology, vol. 25, no. 5, pp. 629–637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K.-B. Min, L. Jing, and O. Stephansson, “Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK,” Hydrogeology Journal, vol. 12, no. 5, pp. 497–510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Baghbanan and L. Jing, “Hydraulic properties of fractured rock masses with correlated fracture length and aperture,” International Journal of Rock Mechanics and Mining Sciences, vol. 44, no. 5, pp. 704–719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Baghbanan and L. Jing, “Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture,” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 8, pp. 1320–1334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Zhao, L. Jing, I. Neretnieks, and L. Moreno, “Numerical modeling of stress effects on solute transport in fractured rocks,” Computers and Geotechnics, vol. 38, no. 2, pp. 113–126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Bao, A. Salama, and S. Sun, “Upscaling of permeability field of fractured rock system: numerical examples,” Journal of Applied Mathematics, Article ID 546203, 20 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  20. W. Z. Chen, J. P. Yang, J. L. Yang, X. B. Qiu, and C. C. Cao, “Hydromechanical coupled model of jointed rock mass and its application to pressure tunnels,” Chinese Journal of Rock Mechanics and Engineering, vol. 27, no. 9, pp. 1569–1571, 2006. View at Google Scholar
  21. W. Chen, J. Yang, X. Zou, and C. Zhou, “Research on macromechanical parameters of fractured rock masses,” Chinese Journal of Rock Mechanics and Engineering, vol. 27, no. 8, pp. 1569–1575, 2008. View at Google Scholar · View at Scopus
  22. J. P. Yang, Study of macro mechanical parameters of fractured rock mass [Ph.D. thesis], Wuhan institute of the Chinese academy of sciences geotechnical engineering, Wuhan, China, 2009.
  23. C. Qiao, Z. Zhang, and X. Li, “Anisotropic strength characteristics of jointed rock mass,” in Proceedings of the ISRM-Sponsored International Symposium on Rock Mechanics, Rock Characterisation Modelling and Engineering Design Methods, p. 140, 2009.
  24. A. Robertson, “The interpretation of geological factors for use in slope theory,” in Proceedings of the Symposium on Theoretical Background to Planning of Open Pit Mines, pp. 55–71, Johannesburg, South Africa, 1970.
  25. C.-Y. Wang and K. T. Law, “Review of borehole camera technology,” Chinese Journal of Rock Mechanics and Engineering, vol. 24, no. 19, pp. 3440–3448, 2005. View at Google Scholar · View at Scopus
  26. Austrian Startup Company, ShapeMetriX3D Model Merger User Manual, Earth Products China, Shenyang, China, 2008.
  27. A. Gaich, W. Schubert, and M. Poetsch, “Three-dimensional rock mass documentation in conventional tunnelling using Joint-MetriX3D,” in Proceedings of the 31st ITA-AITES World Tunnel Congress, E. Yücel and T. Solak, Eds., pp. 59–64, A.A. Balkema Publishers, Istanbul, Turkey, 2005, Underground Space Use: Analysis of the Past and Lessons for the Future.
  28. T. Yang, Q. Yu, S. Chen, H. Liu, T. Yu, and L. Yang, “Rock mass structure digital recognition and hydro-mechanical parameters characterization of sandstone in Fangezhuang coal mine,” Chinese Journal of Rock Mechanics and Engineering, vol. 28, no. 12, pp. 2482–2489, 2009. View at Google Scholar · View at Scopus
  29. P. T. Wang, T. H. Yang, Q. L. Yu, H. L. Liu, and P. H. Zhang, “Characterization on jointed rock masses based on PFC2D,” Frontiers of Structural and Civil Engineering, vol. 7, no. 1, pp. 32–38, 2013. View at Google Scholar
  30. Y. Y. Jiao, X. L. Zhang, and T. C. Li, DDARF Method For Simulating the Whole Process of Rock Failure, Science Publishing House, Beijing. China, 2010.
  31. E. Hoek and E. T. Brown, “Practical estimates of rock mass strength,” International Journal of Rock Mechanics and Mining Sciences, vol. 34, no. 8, pp. 1165–1186, 1997. View at Google Scholar · View at Scopus
  32. P. Marinos and E. Hoek, “Estimating the geotechnical properties of heterogeneous rock masses such as flysch,” Bulletin of Engineering Geology and the Environment, vol. 60, no. 2, pp. 85–92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Hoek, C. Carranza-Torres, and B. Corkum, “Hoek-Brown failure criterion-2002 edition,” in Proceedings of the 5th North American Rock Mechanics Symposium and 17th Tunneling Association of Canada Conference (NARMS-TAC '02), pp. 267–271, 2002.
  34. J. Lemaitre and R. Desmorat, Engineering Damage Mechanics, Springer, Berlin, Germany, 2005.
  35. T. Kawamoto, Y. Ichikawa, and T. Kyoya, “Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 12, no. 1, pp. 1–30, 1988. View at Google Scholar · View at Scopus
  36. F. Sidoroff, “Description of anisotropic damage application to elasticity,” in Proceedings of the IUTAM Colloquium on Physical Nonlinearities in structural analysis, pp. 237–244, 1981.
  37. Y. Wu and Z. Zhang, An Introduction to Rock Mass Hydraulics, Southwest Jiaotong University Press, Chengdu, China, 2005.
  38. D. T. Snow, “Anisotropie Permeability of Fractured Media,” Water Resources Research, vol. 5, no. 6, pp. 1273–1289, 1969. View at Google Scholar
  39. K. Hestir and J. C. S. Long, “Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories,” Journal of Geophysical Research, vol. 95, no. 13, pp. 21565–21581, 1990. View at Google Scholar · View at Scopus
  40. T. Yang and Y. Xiao, “Structural plane survey and analysis of permeability characteristics of open pit mine slope rock mass,” Site Investigation Science and Technology, vol. 16, no. 3, pp. 27–30, 1998. View at Google Scholar
  41. Y. X. Xiao, C. F. Lee, and S. J. Wang, “Assessment of an equivalent porous medium for coupled stress and fluid flow in fractured rock,” International Journal of Rock Mechanics and Mining Sciences, vol. 36, no. 7, pp. 871–881, 1999. View at Google Scholar · View at Scopus
  42. M. A. Biot, “General theory of three-dimensional consolidation,” Journal of Applied Physics, vol. 12, no. 2, pp. 155–164, 1941. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Louis, “Rock hydraulics,” in Rock Mechanics, L. Muller, Ed., pp. 287–299, Springer, New York, NY, USA, 1974. View at Google Scholar
  44. T. H. Yang, T. Xu, H. Y. Liu, C. A. Tang, B. M. Shi, and Q. X. Yu, “Stress-damage-flow coupling model and its application to pressure relief coal bed methane in deep coal seam,” International Journal of Coal Geology, vol. 86, no. 4, pp. 357–366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Terzaghi, R. B. Peck, and G. Mesri, Soil Mechanics in Engineering Practice, Wiley-Interscience, New York, NY, USA, 1996.
  46. C.-S. Chen, E. Pan, and B. Amadei, “Determination of deformability and tensile strength of anisotropic rock using Brazilian tests,” International Journal of Rock Mechanics and Mining Sciences, vol. 35, no. 1, pp. 43–61, 1998. View at Google Scholar · View at Scopus
  47. J. Claesson and B. Bohloli, “Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution,” International Journal of Rock Mechanics and Mining Sciences, vol. 39, no. 8, pp. 991–1004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. M. H. B. Nasseri, K. S. Rao, and T. Ramamurthy, “Anisotropic strength and deformation behavior of Himalayan schists,” International Journal of Rock Mechanics and Mining Sciences, vol. 40, no. 1, pp. 3–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. G. G. Gonzaga, M. H. Leite, and R. Corthésy, “Determination of anisotropic deformability parameters from a single standard rock specimen,” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 8, pp. 1420–1438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. J.-W. Cho, H. Kim, S. Jeon, and K.-B. Min, “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist,” International Journal of Rock Mechanics and Mining Sciences, vol. 50, pp. 158–169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Jia, C.-A. Tang, T.-H. Yang, and S.-H. Wang, “Numerical stability analysis of surrounding rock mass layered by structural planes with different obliquities,” Dongbei Daxue Xuebao/Journal of Northeastern University, vol. 27, no. 11, pp. 1275–1278, 2006. View at Google Scholar · View at Scopus
  52. S. Huang, J. Xu, X. Ding, and A. Wu, “Study of layered rock mass composite model based on characteristics of structural plane and its application,” Chinese Journal of Rock Mechanics and Engineering, vol. 29, no. 4, pp. 743–756, 2010. View at Google Scholar · View at Scopus